Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation
Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recentl...
Gespeichert in:
Veröffentlicht in: | eNeuro 2016-05, Vol.3 (3), p.ENEURO.0136-15.2016 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | ENEURO.0136-15.2016 |
container_title | eNeuro |
container_volume | 3 |
creator | Plaksin, Michael Kimmel, Eitan Shoham, Shy |
description | Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control. |
doi_str_mv | 10.1523/ENEURO.0136-15.2016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4917736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803800315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-ae2b0ec054eb7241562d331a9068f35543ab840333355a8c8f1c44a1bd70b2193</originalsourceid><addsrcrecordid>eNpVkV1LwzAUhoMoKuovECSX3nTmo2m6G0HG_ABR0O06pNmJRttmJu1k_npTp6K5ySF53-ck50XomJIRFYyfTe-m84f7EaG8yKgYMUKLLbTPuOQZKxnb_lPvoaMYXwhJEiZpSXfRHpN8TKQU--hjAnWdzdZLyB6hBtO5FeCptamK2Ft803ZBN9BUQbeAJ3rlOt0532Idscbz1tm1a5_w7Bl8gM4ZXePLwfDuwyu2PuB5nQDRt87gO-iDb_yir78Qh2jH6jrC0fd-gOaX09nkOru9v7qZXNxmJheiyzSwioAhIodKspyKgi04p3pMitJyIXKuqzInPC0hdGlKS02ea1otJKkYHfMDdL7hLvuqgYWB4Uu1WgbX6LBWXjv1_6Z1z-rJr1Q-plLyIgFOvwHBv_UQO9W4aNLc0kh8HxUtCS8J4VQkKd9ITfAxBrC_bShRQ3BqE5wagksHagguuU7-vvDX8xMT_wQQU5bD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803800315</pqid></control><display><type>article</type><title>Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Plaksin, Michael ; Kimmel, Eitan ; Shoham, Shy</creator><creatorcontrib>Plaksin, Michael ; Kimmel, Eitan ; Shoham, Shy</creatorcontrib><description>Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control.</description><identifier>ISSN: 2373-2822</identifier><identifier>EISSN: 2373-2822</identifier><identifier>DOI: 10.1523/ENEURO.0136-15.2016</identifier><identifier>PMID: 27390775</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Biomechanical Phenomena ; Calcium Channels, T-Type - metabolism ; Cell Membrane - physiology ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Humans ; Models, Neurological ; Neural Pathways - cytology ; Neural Pathways - physiology ; Neurons - cytology ; Neurons - physiology ; New Research ; Physical Stimulation ; Thalamus - cytology ; Thalamus - physiology ; Ultrasonic Waves</subject><ispartof>eNeuro, 2016-05, Vol.3 (3), p.ENEURO.0136-15.2016</ispartof><rights>Copyright © 2016 Plaksin et al. 2016 Plaksin et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-ae2b0ec054eb7241562d331a9068f35543ab840333355a8c8f1c44a1bd70b2193</citedby><cites>FETCH-LOGICAL-c455t-ae2b0ec054eb7241562d331a9068f35543ab840333355a8c8f1c44a1bd70b2193</cites><orcidid>0000-0002-2826-9461 ; 0000-0003-0376-3495 ; 0000-0001-6114-4196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917736/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917736/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27390775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plaksin, Michael</creatorcontrib><creatorcontrib>Kimmel, Eitan</creatorcontrib><creatorcontrib>Shoham, Shy</creatorcontrib><title>Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation</title><title>eNeuro</title><addtitle>eNeuro</addtitle><description>Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Calcium Channels, T-Type - metabolism</subject><subject>Cell Membrane - physiology</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>New Research</subject><subject>Physical Stimulation</subject><subject>Thalamus - cytology</subject><subject>Thalamus - physiology</subject><subject>Ultrasonic Waves</subject><issn>2373-2822</issn><issn>2373-2822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkV1LwzAUhoMoKuovECSX3nTmo2m6G0HG_ABR0O06pNmJRttmJu1k_npTp6K5ySF53-ck50XomJIRFYyfTe-m84f7EaG8yKgYMUKLLbTPuOQZKxnb_lPvoaMYXwhJEiZpSXfRHpN8TKQU--hjAnWdzdZLyB6hBtO5FeCptamK2Ft803ZBN9BUQbeAJ3rlOt0532Idscbz1tm1a5_w7Bl8gM4ZXePLwfDuwyu2PuB5nQDRt87gO-iDb_yir78Qh2jH6jrC0fd-gOaX09nkOru9v7qZXNxmJheiyzSwioAhIodKspyKgi04p3pMitJyIXKuqzInPC0hdGlKS02ea1otJKkYHfMDdL7hLvuqgYWB4Uu1WgbX6LBWXjv1_6Z1z-rJr1Q-plLyIgFOvwHBv_UQO9W4aNLc0kh8HxUtCS8J4VQkKd9ITfAxBrC_bShRQ3BqE5wagksHagguuU7-vvDX8xMT_wQQU5bD</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Plaksin, Michael</creator><creator>Kimmel, Eitan</creator><creator>Shoham, Shy</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2826-9461</orcidid><orcidid>https://orcid.org/0000-0003-0376-3495</orcidid><orcidid>https://orcid.org/0000-0001-6114-4196</orcidid></search><sort><creationdate>20160501</creationdate><title>Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation</title><author>Plaksin, Michael ; Kimmel, Eitan ; Shoham, Shy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-ae2b0ec054eb7241562d331a9068f35543ab840333355a8c8f1c44a1bd70b2193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Calcium Channels, T-Type - metabolism</topic><topic>Cell Membrane - physiology</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>New Research</topic><topic>Physical Stimulation</topic><topic>Thalamus - cytology</topic><topic>Thalamus - physiology</topic><topic>Ultrasonic Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plaksin, Michael</creatorcontrib><creatorcontrib>Kimmel, Eitan</creatorcontrib><creatorcontrib>Shoham, Shy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>eNeuro</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plaksin, Michael</au><au>Kimmel, Eitan</au><au>Shoham, Shy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation</atitle><jtitle>eNeuro</jtitle><addtitle>eNeuro</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>3</volume><issue>3</issue><spage>ENEURO.0136-15.2016</spage><pages>ENEURO.0136-15.2016-</pages><issn>2373-2822</issn><eissn>2373-2822</eissn><abstract>Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>27390775</pmid><doi>10.1523/ENEURO.0136-15.2016</doi><orcidid>https://orcid.org/0000-0002-2826-9461</orcidid><orcidid>https://orcid.org/0000-0003-0376-3495</orcidid><orcidid>https://orcid.org/0000-0001-6114-4196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2373-2822 |
ispartof | eNeuro, 2016-05, Vol.3 (3), p.ENEURO.0136-15.2016 |
issn | 2373-2822 2373-2822 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4917736 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Biomechanical Phenomena Calcium Channels, T-Type - metabolism Cell Membrane - physiology Cerebral Cortex - cytology Cerebral Cortex - physiology Humans Models, Neurological Neural Pathways - cytology Neural Pathways - physiology Neurons - cytology Neurons - physiology New Research Physical Stimulation Thalamus - cytology Thalamus - physiology Ultrasonic Waves |
title | Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-Type-Selective%20Effects%20of%20Intramembrane%20Cavitation%20as%20a%20Unifying%20Theoretical%20Framework%20for%20Ultrasonic%20Neuromodulation&rft.jtitle=eNeuro&rft.au=Plaksin,%20Michael&rft.date=2016-05-01&rft.volume=3&rft.issue=3&rft.spage=ENEURO.0136-15.2016&rft.pages=ENEURO.0136-15.2016-&rft.issn=2373-2822&rft.eissn=2373-2822&rft_id=info:doi/10.1523/ENEURO.0136-15.2016&rft_dat=%3Cproquest_pubme%3E1803800315%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803800315&rft_id=info:pmid/27390775&rfr_iscdi=true |