Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation

Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eNeuro 2016-05, Vol.3 (3), p.ENEURO.0136-15.2016
Hauptverfasser: Plaksin, Michael, Kimmel, Eitan, Shoham, Shy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page ENEURO.0136-15.2016
container_title eNeuro
container_volume 3
creator Plaksin, Michael
Kimmel, Eitan
Shoham, Shy
description Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control.
doi_str_mv 10.1523/ENEURO.0136-15.2016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4917736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803800315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-ae2b0ec054eb7241562d331a9068f35543ab840333355a8c8f1c44a1bd70b2193</originalsourceid><addsrcrecordid>eNpVkV1LwzAUhoMoKuovECSX3nTmo2m6G0HG_ABR0O06pNmJRttmJu1k_npTp6K5ySF53-ck50XomJIRFYyfTe-m84f7EaG8yKgYMUKLLbTPuOQZKxnb_lPvoaMYXwhJEiZpSXfRHpN8TKQU--hjAnWdzdZLyB6hBtO5FeCptamK2Ft803ZBN9BUQbeAJ3rlOt0532Idscbz1tm1a5_w7Bl8gM4ZXePLwfDuwyu2PuB5nQDRt87gO-iDb_yir78Qh2jH6jrC0fd-gOaX09nkOru9v7qZXNxmJheiyzSwioAhIodKspyKgi04p3pMitJyIXKuqzInPC0hdGlKS02ea1otJKkYHfMDdL7hLvuqgYWB4Uu1WgbX6LBWXjv1_6Z1z-rJr1Q-plLyIgFOvwHBv_UQO9W4aNLc0kh8HxUtCS8J4VQkKd9ITfAxBrC_bShRQ3BqE5wagksHagguuU7-vvDX8xMT_wQQU5bD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803800315</pqid></control><display><type>article</type><title>Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Plaksin, Michael ; Kimmel, Eitan ; Shoham, Shy</creator><creatorcontrib>Plaksin, Michael ; Kimmel, Eitan ; Shoham, Shy</creatorcontrib><description>Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control.</description><identifier>ISSN: 2373-2822</identifier><identifier>EISSN: 2373-2822</identifier><identifier>DOI: 10.1523/ENEURO.0136-15.2016</identifier><identifier>PMID: 27390775</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Biomechanical Phenomena ; Calcium Channels, T-Type - metabolism ; Cell Membrane - physiology ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Humans ; Models, Neurological ; Neural Pathways - cytology ; Neural Pathways - physiology ; Neurons - cytology ; Neurons - physiology ; New Research ; Physical Stimulation ; Thalamus - cytology ; Thalamus - physiology ; Ultrasonic Waves</subject><ispartof>eNeuro, 2016-05, Vol.3 (3), p.ENEURO.0136-15.2016</ispartof><rights>Copyright © 2016 Plaksin et al. 2016 Plaksin et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-ae2b0ec054eb7241562d331a9068f35543ab840333355a8c8f1c44a1bd70b2193</citedby><cites>FETCH-LOGICAL-c455t-ae2b0ec054eb7241562d331a9068f35543ab840333355a8c8f1c44a1bd70b2193</cites><orcidid>0000-0002-2826-9461 ; 0000-0003-0376-3495 ; 0000-0001-6114-4196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917736/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917736/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27390775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plaksin, Michael</creatorcontrib><creatorcontrib>Kimmel, Eitan</creatorcontrib><creatorcontrib>Shoham, Shy</creatorcontrib><title>Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation</title><title>eNeuro</title><addtitle>eNeuro</addtitle><description>Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Calcium Channels, T-Type - metabolism</subject><subject>Cell Membrane - physiology</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>New Research</subject><subject>Physical Stimulation</subject><subject>Thalamus - cytology</subject><subject>Thalamus - physiology</subject><subject>Ultrasonic Waves</subject><issn>2373-2822</issn><issn>2373-2822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkV1LwzAUhoMoKuovECSX3nTmo2m6G0HG_ABR0O06pNmJRttmJu1k_npTp6K5ySF53-ck50XomJIRFYyfTe-m84f7EaG8yKgYMUKLLbTPuOQZKxnb_lPvoaMYXwhJEiZpSXfRHpN8TKQU--hjAnWdzdZLyB6hBtO5FeCptamK2Ft803ZBN9BUQbeAJ3rlOt0532Idscbz1tm1a5_w7Bl8gM4ZXePLwfDuwyu2PuB5nQDRt87gO-iDb_yir78Qh2jH6jrC0fd-gOaX09nkOru9v7qZXNxmJheiyzSwioAhIodKspyKgi04p3pMitJyIXKuqzInPC0hdGlKS02ea1otJKkYHfMDdL7hLvuqgYWB4Uu1WgbX6LBWXjv1_6Z1z-rJr1Q-plLyIgFOvwHBv_UQO9W4aNLc0kh8HxUtCS8J4VQkKd9ITfAxBrC_bShRQ3BqE5wagksHagguuU7-vvDX8xMT_wQQU5bD</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Plaksin, Michael</creator><creator>Kimmel, Eitan</creator><creator>Shoham, Shy</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2826-9461</orcidid><orcidid>https://orcid.org/0000-0003-0376-3495</orcidid><orcidid>https://orcid.org/0000-0001-6114-4196</orcidid></search><sort><creationdate>20160501</creationdate><title>Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation</title><author>Plaksin, Michael ; Kimmel, Eitan ; Shoham, Shy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-ae2b0ec054eb7241562d331a9068f35543ab840333355a8c8f1c44a1bd70b2193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Calcium Channels, T-Type - metabolism</topic><topic>Cell Membrane - physiology</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>New Research</topic><topic>Physical Stimulation</topic><topic>Thalamus - cytology</topic><topic>Thalamus - physiology</topic><topic>Ultrasonic Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plaksin, Michael</creatorcontrib><creatorcontrib>Kimmel, Eitan</creatorcontrib><creatorcontrib>Shoham, Shy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>eNeuro</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plaksin, Michael</au><au>Kimmel, Eitan</au><au>Shoham, Shy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation</atitle><jtitle>eNeuro</jtitle><addtitle>eNeuro</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>3</volume><issue>3</issue><spage>ENEURO.0136-15.2016</spage><pages>ENEURO.0136-15.2016-</pages><issn>2373-2822</issn><eissn>2373-2822</eissn><abstract>Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>27390775</pmid><doi>10.1523/ENEURO.0136-15.2016</doi><orcidid>https://orcid.org/0000-0002-2826-9461</orcidid><orcidid>https://orcid.org/0000-0003-0376-3495</orcidid><orcidid>https://orcid.org/0000-0001-6114-4196</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2373-2822
ispartof eNeuro, 2016-05, Vol.3 (3), p.ENEURO.0136-15.2016
issn 2373-2822
2373-2822
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4917736
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Biomechanical Phenomena
Calcium Channels, T-Type - metabolism
Cell Membrane - physiology
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Humans
Models, Neurological
Neural Pathways - cytology
Neural Pathways - physiology
Neurons - cytology
Neurons - physiology
New Research
Physical Stimulation
Thalamus - cytology
Thalamus - physiology
Ultrasonic Waves
title Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-Type-Selective%20Effects%20of%20Intramembrane%20Cavitation%20as%20a%20Unifying%20Theoretical%20Framework%20for%20Ultrasonic%20Neuromodulation&rft.jtitle=eNeuro&rft.au=Plaksin,%20Michael&rft.date=2016-05-01&rft.volume=3&rft.issue=3&rft.spage=ENEURO.0136-15.2016&rft.pages=ENEURO.0136-15.2016-&rft.issn=2373-2822&rft.eissn=2373-2822&rft_id=info:doi/10.1523/ENEURO.0136-15.2016&rft_dat=%3Cproquest_pubme%3E1803800315%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803800315&rft_id=info:pmid/27390775&rfr_iscdi=true