Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma

Given the involvement of telomerase activation and dysregulated metabolism in glioma progression, the connection between these two critical players was investigated. Pharmacological inhibition of human Telomerase reverse transcriptase (hTERT) by Costunolide induced glioma cell apoptosis in a reactiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2016-05, Vol.7 (5), p.e2213-e2213
Hauptverfasser: Ahmad, F, Dixit, D, Sharma, V, Kumar, A, Joshi, S D, Sarkar, C, Sen, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2213
container_issue 5
container_start_page e2213
container_title Cell death & disease
container_volume 7
creator Ahmad, F
Dixit, D
Sharma, V
Kumar, A
Joshi, S D
Sarkar, C
Sen, E
description Given the involvement of telomerase activation and dysregulated metabolism in glioma progression, the connection between these two critical players was investigated. Pharmacological inhibition of human Telomerase reverse transcriptase (hTERT) by Costunolide induced glioma cell apoptosis in a reactive oxygen species (ROS)-dependent manner. Costunolide induced an ROS-dependent increase in p53 abrogated telomerase activity. Costunolide decreased Nrf2 level; and ectopic Nrf2 expression decreased Costunolide-induced ROS generation. While TERT knock-down abrogated Nrf2 levels, overexpression of Nrf2 increased TERT expression. Inhibition of hTERT either by Costunolide, or by siRNA or dominant-negative hTERT (DN-hTERT) abrogated (i) expression of Glucose-6-phosphate dehydrogenase (G6PD) and Transketolase (TKT) – two major nodes in the pentose phosphate (PPP) pathway; and (ii) phosphorylation of glycogen synthase (GS). hTERT knock-down decreased TKT activity and increased glycogen accumulation. Interestingly, siRNA-mediated knock-down of TKT elevated glycogen accumulation. Coherent with the in vitro findings, Costunolide reduced tumor burden in heterotypic xenograft glioma mouse model. Costunolide-treated tumors exhibited diminished TKT activity, heightened glycogen accumulation, and increased senescence. Importantly, glioblastoma multiforme (GBM) patient tumors bearing TERT promoter mutations (C228T and C250T) known to be associated with increased telomerase activity; exhibited elevated Nrf2 and TKT expression and decreased glycogen accumulation. Taken together, our findings highlight the previously unknown (i) role of telomerase in the regulation of PPP and glycogen accumulation and (ii) the involvement of Nrf2-TERT loop in maintaining oxidative defense responses in glioma cells.
doi_str_mv 10.1038/cddis.2016.117
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4917655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787471431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-9180b091f37723f9b66eaa073de90adc9e0defc96d1399d9eec21b14283702813</originalsourceid><addsrcrecordid>eNptkUtLAzEUhYMoWtStSxlw42ZqHtM8NoLUJxQFqeuQmdxpp0wnYzJT8d-bWpUqZpOQ--Xcc3MQOiF4SDCTF4W1VRhSTPiQELGDBhRnJM2kVLtb5wN0HMICx8UYpiO-jw6oIJnkkg_Q9aMvaWp9tYImmd48TxMPs742HYSkhaZzAZJ27kI7j1dJa7r5m3lPqiaZ1ZXLaxM6tzRHaK80dYDjr_0QvdzeTMf36eTp7mF8NUmLEc26VBGJc6xIyYSgrFQ552AMFsyCwsYWCrCFslDcEqaUVQAFJTnJqGQCU0nYIbrc6LZ9vgRbRH_e1Lr11dL4d-1MpX9XmmquZ26lM0UEH42iwPmXgHevPYROL6tQQF2bBlwfNBFSZPFv2LrX2R904XrfxPHWFBcqGlKRGm6owrsQPJQ_ZgjW64z0Z0Z6nZGOGcUHp9sj_ODfiUTgYgOEWGpm4Lf6_i_5AR3knTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786792819</pqid></control><display><type>article</type><title>Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Ahmad, F ; Dixit, D ; Sharma, V ; Kumar, A ; Joshi, S D ; Sarkar, C ; Sen, E</creator><creatorcontrib>Ahmad, F ; Dixit, D ; Sharma, V ; Kumar, A ; Joshi, S D ; Sarkar, C ; Sen, E</creatorcontrib><description>Given the involvement of telomerase activation and dysregulated metabolism in glioma progression, the connection between these two critical players was investigated. Pharmacological inhibition of human Telomerase reverse transcriptase (hTERT) by Costunolide induced glioma cell apoptosis in a reactive oxygen species (ROS)-dependent manner. Costunolide induced an ROS-dependent increase in p53 abrogated telomerase activity. Costunolide decreased Nrf2 level; and ectopic Nrf2 expression decreased Costunolide-induced ROS generation. While TERT knock-down abrogated Nrf2 levels, overexpression of Nrf2 increased TERT expression. Inhibition of hTERT either by Costunolide, or by siRNA or dominant-negative hTERT (DN-hTERT) abrogated (i) expression of Glucose-6-phosphate dehydrogenase (G6PD) and Transketolase (TKT) – two major nodes in the pentose phosphate (PPP) pathway; and (ii) phosphorylation of glycogen synthase (GS). hTERT knock-down decreased TKT activity and increased glycogen accumulation. Interestingly, siRNA-mediated knock-down of TKT elevated glycogen accumulation. Coherent with the in vitro findings, Costunolide reduced tumor burden in heterotypic xenograft glioma mouse model. Costunolide-treated tumors exhibited diminished TKT activity, heightened glycogen accumulation, and increased senescence. Importantly, glioblastoma multiforme (GBM) patient tumors bearing TERT promoter mutations (C228T and C250T) known to be associated with increased telomerase activity; exhibited elevated Nrf2 and TKT expression and decreased glycogen accumulation. Taken together, our findings highlight the previously unknown (i) role of telomerase in the regulation of PPP and glycogen accumulation and (ii) the involvement of Nrf2-TERT loop in maintaining oxidative defense responses in glioma cells.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/cddis.2016.117</identifier><identifier>PMID: 27148686</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/109 ; 13/2 ; 38 ; 38/77 ; 631/45/612/1245 ; 631/67/1922 ; 631/67/2327 ; 631/80/86 ; 64 ; 64/60 ; 82 ; 82/29 ; Animals ; Antibodies ; Antineoplastic Agents, Phytogenic - pharmacology ; Biochemistry ; Biomedical and Life Sciences ; Brain Neoplasms - drug therapy ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Cell Biology ; Cell Culture ; Cell Line, Tumor ; Cellular Senescence - drug effects ; Gene Expression Regulation, Neoplastic ; Glioblastoma - drug therapy ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Glucosephosphate Dehydrogenase - genetics ; Glucosephosphate Dehydrogenase - metabolism ; Glycogen - biosynthesis ; Glycogen Synthase - genetics ; Glycogen Synthase - metabolism ; Humans ; Immunology ; Life Sciences ; Metabolism ; Mice ; Mice, Nude ; NF-E2-Related Factor 2 - antagonists &amp; inhibitors ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; Original ; original-article ; Pentose Phosphate Pathway - drug effects ; Pentose Phosphate Pathway - genetics ; Phosphates ; Phosphorylation - drug effects ; Reactive Oxygen Species - agonists ; Reactive Oxygen Species - metabolism ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Sesquiterpenes - pharmacology ; Signal Transduction ; Telomerase ; Telomerase - genetics ; Telomerase - metabolism ; Transketolase - antagonists &amp; inhibitors ; Transketolase - genetics ; Transketolase - metabolism ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Xenograft Model Antitumor Assays</subject><ispartof>Cell death &amp; disease, 2016-05, Vol.7 (5), p.e2213-e2213</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group May 2016</rights><rights>Copyright © 2016 Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-9180b091f37723f9b66eaa073de90adc9e0defc96d1399d9eec21b14283702813</citedby><cites>FETCH-LOGICAL-c524t-9180b091f37723f9b66eaa073de90adc9e0defc96d1399d9eec21b14283702813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917655/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917655/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27148686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmad, F</creatorcontrib><creatorcontrib>Dixit, D</creatorcontrib><creatorcontrib>Sharma, V</creatorcontrib><creatorcontrib>Kumar, A</creatorcontrib><creatorcontrib>Joshi, S D</creatorcontrib><creatorcontrib>Sarkar, C</creatorcontrib><creatorcontrib>Sen, E</creatorcontrib><title>Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Given the involvement of telomerase activation and dysregulated metabolism in glioma progression, the connection between these two critical players was investigated. Pharmacological inhibition of human Telomerase reverse transcriptase (hTERT) by Costunolide induced glioma cell apoptosis in a reactive oxygen species (ROS)-dependent manner. Costunolide induced an ROS-dependent increase in p53 abrogated telomerase activity. Costunolide decreased Nrf2 level; and ectopic Nrf2 expression decreased Costunolide-induced ROS generation. While TERT knock-down abrogated Nrf2 levels, overexpression of Nrf2 increased TERT expression. Inhibition of hTERT either by Costunolide, or by siRNA or dominant-negative hTERT (DN-hTERT) abrogated (i) expression of Glucose-6-phosphate dehydrogenase (G6PD) and Transketolase (TKT) – two major nodes in the pentose phosphate (PPP) pathway; and (ii) phosphorylation of glycogen synthase (GS). hTERT knock-down decreased TKT activity and increased glycogen accumulation. Interestingly, siRNA-mediated knock-down of TKT elevated glycogen accumulation. Coherent with the in vitro findings, Costunolide reduced tumor burden in heterotypic xenograft glioma mouse model. Costunolide-treated tumors exhibited diminished TKT activity, heightened glycogen accumulation, and increased senescence. Importantly, glioblastoma multiforme (GBM) patient tumors bearing TERT promoter mutations (C228T and C250T) known to be associated with increased telomerase activity; exhibited elevated Nrf2 and TKT expression and decreased glycogen accumulation. Taken together, our findings highlight the previously unknown (i) role of telomerase in the regulation of PPP and glycogen accumulation and (ii) the involvement of Nrf2-TERT loop in maintaining oxidative defense responses in glioma cells.</description><subject>13</subject><subject>13/109</subject><subject>13/2</subject><subject>38</subject><subject>38/77</subject><subject>631/45/612/1245</subject><subject>631/67/1922</subject><subject>631/67/2327</subject><subject>631/80/86</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/29</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Line, Tumor</subject><subject>Cellular Senescence - drug effects</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Glucosephosphate Dehydrogenase - genetics</subject><subject>Glucosephosphate Dehydrogenase - metabolism</subject><subject>Glycogen - biosynthesis</subject><subject>Glycogen Synthase - genetics</subject><subject>Glycogen Synthase - metabolism</subject><subject>Humans</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>NF-E2-Related Factor 2 - antagonists &amp; inhibitors</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Original</subject><subject>original-article</subject><subject>Pentose Phosphate Pathway - drug effects</subject><subject>Pentose Phosphate Pathway - genetics</subject><subject>Phosphates</subject><subject>Phosphorylation - drug effects</subject><subject>Reactive Oxygen Species - agonists</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sesquiterpenes - pharmacology</subject><subject>Signal Transduction</subject><subject>Telomerase</subject><subject>Telomerase - genetics</subject><subject>Telomerase - metabolism</subject><subject>Transketolase - antagonists &amp; inhibitors</subject><subject>Transketolase - genetics</subject><subject>Transketolase - metabolism</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkUtLAzEUhYMoWtStSxlw42ZqHtM8NoLUJxQFqeuQmdxpp0wnYzJT8d-bWpUqZpOQ--Xcc3MQOiF4SDCTF4W1VRhSTPiQELGDBhRnJM2kVLtb5wN0HMICx8UYpiO-jw6oIJnkkg_Q9aMvaWp9tYImmd48TxMPs742HYSkhaZzAZJ27kI7j1dJa7r5m3lPqiaZ1ZXLaxM6tzRHaK80dYDjr_0QvdzeTMf36eTp7mF8NUmLEc26VBGJc6xIyYSgrFQ552AMFsyCwsYWCrCFslDcEqaUVQAFJTnJqGQCU0nYIbrc6LZ9vgRbRH_e1Lr11dL4d-1MpX9XmmquZ26lM0UEH42iwPmXgHevPYROL6tQQF2bBlwfNBFSZPFv2LrX2R904XrfxPHWFBcqGlKRGm6owrsQPJQ_ZgjW64z0Z0Z6nZGOGcUHp9sj_ODfiUTgYgOEWGpm4Lf6_i_5AR3knTU</recordid><startdate>20160505</startdate><enddate>20160505</enddate><creator>Ahmad, F</creator><creator>Dixit, D</creator><creator>Sharma, V</creator><creator>Kumar, A</creator><creator>Joshi, S D</creator><creator>Sarkar, C</creator><creator>Sen, E</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160505</creationdate><title>Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma</title><author>Ahmad, F ; Dixit, D ; Sharma, V ; Kumar, A ; Joshi, S D ; Sarkar, C ; Sen, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-9180b091f37723f9b66eaa073de90adc9e0defc96d1399d9eec21b14283702813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13</topic><topic>13/109</topic><topic>13/2</topic><topic>38</topic><topic>38/77</topic><topic>631/45/612/1245</topic><topic>631/67/1922</topic><topic>631/67/2327</topic><topic>631/80/86</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/29</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Line, Tumor</topic><topic>Cellular Senescence - drug effects</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Glucosephosphate Dehydrogenase - genetics</topic><topic>Glucosephosphate Dehydrogenase - metabolism</topic><topic>Glycogen - biosynthesis</topic><topic>Glycogen Synthase - genetics</topic><topic>Glycogen Synthase - metabolism</topic><topic>Humans</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>NF-E2-Related Factor 2 - antagonists &amp; inhibitors</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Original</topic><topic>original-article</topic><topic>Pentose Phosphate Pathway - drug effects</topic><topic>Pentose Phosphate Pathway - genetics</topic><topic>Phosphates</topic><topic>Phosphorylation - drug effects</topic><topic>Reactive Oxygen Species - agonists</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sesquiterpenes - pharmacology</topic><topic>Signal Transduction</topic><topic>Telomerase</topic><topic>Telomerase - genetics</topic><topic>Telomerase - metabolism</topic><topic>Transketolase - antagonists &amp; inhibitors</topic><topic>Transketolase - genetics</topic><topic>Transketolase - metabolism</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, F</creatorcontrib><creatorcontrib>Dixit, D</creatorcontrib><creatorcontrib>Sharma, V</creatorcontrib><creatorcontrib>Kumar, A</creatorcontrib><creatorcontrib>Joshi, S D</creatorcontrib><creatorcontrib>Sarkar, C</creatorcontrib><creatorcontrib>Sen, E</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, F</au><au>Dixit, D</au><au>Sharma, V</au><au>Kumar, A</au><au>Joshi, S D</au><au>Sarkar, C</au><au>Sen, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2016-05-05</date><risdate>2016</risdate><volume>7</volume><issue>5</issue><spage>e2213</spage><epage>e2213</epage><pages>e2213-e2213</pages><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Given the involvement of telomerase activation and dysregulated metabolism in glioma progression, the connection between these two critical players was investigated. Pharmacological inhibition of human Telomerase reverse transcriptase (hTERT) by Costunolide induced glioma cell apoptosis in a reactive oxygen species (ROS)-dependent manner. Costunolide induced an ROS-dependent increase in p53 abrogated telomerase activity. Costunolide decreased Nrf2 level; and ectopic Nrf2 expression decreased Costunolide-induced ROS generation. While TERT knock-down abrogated Nrf2 levels, overexpression of Nrf2 increased TERT expression. Inhibition of hTERT either by Costunolide, or by siRNA or dominant-negative hTERT (DN-hTERT) abrogated (i) expression of Glucose-6-phosphate dehydrogenase (G6PD) and Transketolase (TKT) – two major nodes in the pentose phosphate (PPP) pathway; and (ii) phosphorylation of glycogen synthase (GS). hTERT knock-down decreased TKT activity and increased glycogen accumulation. Interestingly, siRNA-mediated knock-down of TKT elevated glycogen accumulation. Coherent with the in vitro findings, Costunolide reduced tumor burden in heterotypic xenograft glioma mouse model. Costunolide-treated tumors exhibited diminished TKT activity, heightened glycogen accumulation, and increased senescence. Importantly, glioblastoma multiforme (GBM) patient tumors bearing TERT promoter mutations (C228T and C250T) known to be associated with increased telomerase activity; exhibited elevated Nrf2 and TKT expression and decreased glycogen accumulation. Taken together, our findings highlight the previously unknown (i) role of telomerase in the regulation of PPP and glycogen accumulation and (ii) the involvement of Nrf2-TERT loop in maintaining oxidative defense responses in glioma cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27148686</pmid><doi>10.1038/cddis.2016.117</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2016-05, Vol.7 (5), p.e2213-e2213
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4917655
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
subjects 13
13/109
13/2
38
38/77
631/45/612/1245
631/67/1922
631/67/2327
631/80/86
64
64/60
82
82/29
Animals
Antibodies
Antineoplastic Agents, Phytogenic - pharmacology
Biochemistry
Biomedical and Life Sciences
Brain Neoplasms - drug therapy
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Cell Biology
Cell Culture
Cell Line, Tumor
Cellular Senescence - drug effects
Gene Expression Regulation, Neoplastic
Glioblastoma - drug therapy
Glioblastoma - genetics
Glioblastoma - metabolism
Glioblastoma - pathology
Glucosephosphate Dehydrogenase - genetics
Glucosephosphate Dehydrogenase - metabolism
Glycogen - biosynthesis
Glycogen Synthase - genetics
Glycogen Synthase - metabolism
Humans
Immunology
Life Sciences
Metabolism
Mice
Mice, Nude
NF-E2-Related Factor 2 - antagonists & inhibitors
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
Original
original-article
Pentose Phosphate Pathway - drug effects
Pentose Phosphate Pathway - genetics
Phosphates
Phosphorylation - drug effects
Reactive Oxygen Species - agonists
Reactive Oxygen Species - metabolism
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Sesquiterpenes - pharmacology
Signal Transduction
Telomerase
Telomerase - genetics
Telomerase - metabolism
Transketolase - antagonists & inhibitors
Transketolase - genetics
Transketolase - metabolism
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Xenograft Model Antitumor Assays
title Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nrf2-driven%20TERT%20regulates%20pentose%20phosphate%20pathway%20in%20glioblastoma&rft.jtitle=Cell%20death%20&%20disease&rft.au=Ahmad,%20F&rft.date=2016-05-05&rft.volume=7&rft.issue=5&rft.spage=e2213&rft.epage=e2213&rft.pages=e2213-e2213&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/cddis.2016.117&rft_dat=%3Cproquest_pubme%3E1787471431%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786792819&rft_id=info:pmid/27148686&rfr_iscdi=true