Involvement of Lipocalin-like CghA in Decalin-Forming Stereoselective Intramolecular [4+2] Cycloaddition

Understanding enzymatic Diels–Alder (DA) reactions that can form complex natural product scaffolds is of considerable interest. Sch 210972 1, a potential anti‐HIV fungal natural product, contains a decalin core that is proposed to form through a DA reaction. We identified the gene cluster responsibl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2015-11, Vol.16 (16), p.2294-2298
Hauptverfasser: Sato, Michio, Yagishita, Fumitoshi, Mino, Takashi, Uchiyama, Nahoko, Patel, Ashay, Chooi, Yit-Heng, Goda, Yukihiro, Xu, Wei, Noguchi, Hiroshi, Yamamoto, Tsuyoshi, Hotta, Kinya, Houk, Kendall N., Tang, Yi, Watanabe, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2298
container_issue 16
container_start_page 2294
container_title Chembiochem : a European journal of chemical biology
container_volume 16
creator Sato, Michio
Yagishita, Fumitoshi
Mino, Takashi
Uchiyama, Nahoko
Patel, Ashay
Chooi, Yit-Heng
Goda, Yukihiro
Xu, Wei
Noguchi, Hiroshi
Yamamoto, Tsuyoshi
Hotta, Kinya
Houk, Kendall N.
Tang, Yi
Watanabe, Kenji
description Understanding enzymatic Diels–Alder (DA) reactions that can form complex natural product scaffolds is of considerable interest. Sch 210972 1, a potential anti‐HIV fungal natural product, contains a decalin core that is proposed to form through a DA reaction. We identified the gene cluster responsible for the biosynthesis of 1 and heterologously reconstituted the biosynthetic pathway in Aspergillus nidulans to characterize the enzymes involved. Most notably, deletion of cghA resulted in a loss of stereoselective decalin core formation, yielding both an endo (1) and a diastereomeric exo adduct of the proposed DA reaction. Complementation with cghA restored the sole formation of 1. Density functional theory computation of the proposed DA reaction provided a plausible explanation of the observed pattern of product formation. Based on our study, we propose that lipocalin‐like CghA is responsible for the stereoselective intramolecular [4+2] cycloaddition that forms the decalin core of 1. Decalin decadence: The C. globosum gene cluster responsible for the biosynthesis of Sch 210972, a potential anti‐HIV fungal polyketide–nonribosomal peptide hybrid natural product, has been identified. Genetic, biochemical and computational studies revealed the function of four enzymes involved. Most notably, lipocalin‐like CghA facilitates a stereoselective intramolecular [4+2] cycloaddition to form the decalin core.
doi_str_mv 10.1002/cbic.201500386
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4915928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727438505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6096-75a831632c3b85066168b61b231a00df04049a19fdcd13964c9f8e4f1855374a3</originalsourceid><addsrcrecordid>eNqFkd1v0zAUxSMEYmPwyiOKxAsSSvFXnPgFaQtsK6qGEEOTQMhynJvWm2MXOyn0vydVSjV44cn29e8cnauTJM8xmmGEyBtdGz0jCOcI0ZI_SI4xoyIrOKUP93dGSHGUPInxFiEkOMWPkyPCKUeckeNkNXcbbzfQgetT36YLs_ZaWeMya-4grZar09S49B1Mw3MfOuOW6eceAvgIFnRvNpDOXR9U58fnYFVIv7HX5HtabbX1qmlMb7x7mjxqlY3wbH-eJF_O319Xl9ni48W8Ol1kmo_psiJXJcWcEk3rMkecY17WHNeEYoVQ0yKGmFBYtI1uMBWcadGWwFpc5jktmKInydvJdz3UHTQadsmsXAfTqbCVXhn5948zK7n0G8kEzgUpR4NXe4PgfwwQe9mZqMFa5cAPUeKCFIyO2fIRffkPeuuH4Mb1dhTjOUUlH6nZROngYwzQHsJgJHclyl2J8lDiKHhxf4UD_qe1ERAT8NNY2P7HTlZn8-q-eTZpTezh10Grwp3kBS1yeXN1Ia8-XC5u8PUn-ZX-Br8ft94</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1724653086</pqid></control><display><type>article</type><title>Involvement of Lipocalin-like CghA in Decalin-Forming Stereoselective Intramolecular [4+2] Cycloaddition</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Sato, Michio ; Yagishita, Fumitoshi ; Mino, Takashi ; Uchiyama, Nahoko ; Patel, Ashay ; Chooi, Yit-Heng ; Goda, Yukihiro ; Xu, Wei ; Noguchi, Hiroshi ; Yamamoto, Tsuyoshi ; Hotta, Kinya ; Houk, Kendall N. ; Tang, Yi ; Watanabe, Kenji</creator><creatorcontrib>Sato, Michio ; Yagishita, Fumitoshi ; Mino, Takashi ; Uchiyama, Nahoko ; Patel, Ashay ; Chooi, Yit-Heng ; Goda, Yukihiro ; Xu, Wei ; Noguchi, Hiroshi ; Yamamoto, Tsuyoshi ; Hotta, Kinya ; Houk, Kendall N. ; Tang, Yi ; Watanabe, Kenji</creatorcontrib><description>Understanding enzymatic Diels–Alder (DA) reactions that can form complex natural product scaffolds is of considerable interest. Sch 210972 1, a potential anti‐HIV fungal natural product, contains a decalin core that is proposed to form through a DA reaction. We identified the gene cluster responsible for the biosynthesis of 1 and heterologously reconstituted the biosynthetic pathway in Aspergillus nidulans to characterize the enzymes involved. Most notably, deletion of cghA resulted in a loss of stereoselective decalin core formation, yielding both an endo (1) and a diastereomeric exo adduct of the proposed DA reaction. Complementation with cghA restored the sole formation of 1. Density functional theory computation of the proposed DA reaction provided a plausible explanation of the observed pattern of product formation. Based on our study, we propose that lipocalin‐like CghA is responsible for the stereoselective intramolecular [4+2] cycloaddition that forms the decalin core of 1. Decalin decadence: The C. globosum gene cluster responsible for the biosynthesis of Sch 210972, a potential anti‐HIV fungal polyketide–nonribosomal peptide hybrid natural product, has been identified. Genetic, biochemical and computational studies revealed the function of four enzymes involved. Most notably, lipocalin‐like CghA facilitates a stereoselective intramolecular [4+2] cycloaddition to form the decalin core.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201500386</identifier><identifier>PMID: 26360642</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Aspergillus nidulans - enzymology ; Aspergillus nidulans - genetics ; cycloaddition ; Cycloaddition Reaction ; decalin ; density functional calculations ; fungal metabolite ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Lipocalins - chemistry ; Lipocalins - metabolism ; Molecular Conformation ; Naphthalenes - chemical synthesis ; Naphthalenes - chemistry ; Natural products ; Stereoisomerism ; tetramic acid ; Thermodynamics</subject><ispartof>Chembiochem : a European journal of chemical biology, 2015-11, Vol.16 (16), p.2294-2298</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6096-75a831632c3b85066168b61b231a00df04049a19fdcd13964c9f8e4f1855374a3</citedby><cites>FETCH-LOGICAL-c6096-75a831632c3b85066168b61b231a00df04049a19fdcd13964c9f8e4f1855374a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201500386$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201500386$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26360642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sato, Michio</creatorcontrib><creatorcontrib>Yagishita, Fumitoshi</creatorcontrib><creatorcontrib>Mino, Takashi</creatorcontrib><creatorcontrib>Uchiyama, Nahoko</creatorcontrib><creatorcontrib>Patel, Ashay</creatorcontrib><creatorcontrib>Chooi, Yit-Heng</creatorcontrib><creatorcontrib>Goda, Yukihiro</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Noguchi, Hiroshi</creatorcontrib><creatorcontrib>Yamamoto, Tsuyoshi</creatorcontrib><creatorcontrib>Hotta, Kinya</creatorcontrib><creatorcontrib>Houk, Kendall N.</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><title>Involvement of Lipocalin-like CghA in Decalin-Forming Stereoselective Intramolecular [4+2] Cycloaddition</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>ChemBioChem</addtitle><description>Understanding enzymatic Diels–Alder (DA) reactions that can form complex natural product scaffolds is of considerable interest. Sch 210972 1, a potential anti‐HIV fungal natural product, contains a decalin core that is proposed to form through a DA reaction. We identified the gene cluster responsible for the biosynthesis of 1 and heterologously reconstituted the biosynthetic pathway in Aspergillus nidulans to characterize the enzymes involved. Most notably, deletion of cghA resulted in a loss of stereoselective decalin core formation, yielding both an endo (1) and a diastereomeric exo adduct of the proposed DA reaction. Complementation with cghA restored the sole formation of 1. Density functional theory computation of the proposed DA reaction provided a plausible explanation of the observed pattern of product formation. Based on our study, we propose that lipocalin‐like CghA is responsible for the stereoselective intramolecular [4+2] cycloaddition that forms the decalin core of 1. Decalin decadence: The C. globosum gene cluster responsible for the biosynthesis of Sch 210972, a potential anti‐HIV fungal polyketide–nonribosomal peptide hybrid natural product, has been identified. Genetic, biochemical and computational studies revealed the function of four enzymes involved. Most notably, lipocalin‐like CghA facilitates a stereoselective intramolecular [4+2] cycloaddition to form the decalin core.</description><subject>Aspergillus nidulans - enzymology</subject><subject>Aspergillus nidulans - genetics</subject><subject>cycloaddition</subject><subject>Cycloaddition Reaction</subject><subject>decalin</subject><subject>density functional calculations</subject><subject>fungal metabolite</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Lipocalins - chemistry</subject><subject>Lipocalins - metabolism</subject><subject>Molecular Conformation</subject><subject>Naphthalenes - chemical synthesis</subject><subject>Naphthalenes - chemistry</subject><subject>Natural products</subject><subject>Stereoisomerism</subject><subject>tetramic acid</subject><subject>Thermodynamics</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1v0zAUxSMEYmPwyiOKxAsSSvFXnPgFaQtsK6qGEEOTQMhynJvWm2MXOyn0vydVSjV44cn29e8cnauTJM8xmmGEyBtdGz0jCOcI0ZI_SI4xoyIrOKUP93dGSHGUPInxFiEkOMWPkyPCKUeckeNkNXcbbzfQgetT36YLs_ZaWeMya-4grZar09S49B1Mw3MfOuOW6eceAvgIFnRvNpDOXR9U58fnYFVIv7HX5HtabbX1qmlMb7x7mjxqlY3wbH-eJF_O319Xl9ni48W8Ol1kmo_psiJXJcWcEk3rMkecY17WHNeEYoVQ0yKGmFBYtI1uMBWcadGWwFpc5jktmKInydvJdz3UHTQadsmsXAfTqbCVXhn5948zK7n0G8kEzgUpR4NXe4PgfwwQe9mZqMFa5cAPUeKCFIyO2fIRffkPeuuH4Mb1dhTjOUUlH6nZROngYwzQHsJgJHclyl2J8lDiKHhxf4UD_qe1ERAT8NNY2P7HTlZn8-q-eTZpTezh10Grwp3kBS1yeXN1Ia8-XC5u8PUn-ZX-Br8ft94</recordid><startdate>20151102</startdate><enddate>20151102</enddate><creator>Sato, Michio</creator><creator>Yagishita, Fumitoshi</creator><creator>Mino, Takashi</creator><creator>Uchiyama, Nahoko</creator><creator>Patel, Ashay</creator><creator>Chooi, Yit-Heng</creator><creator>Goda, Yukihiro</creator><creator>Xu, Wei</creator><creator>Noguchi, Hiroshi</creator><creator>Yamamoto, Tsuyoshi</creator><creator>Hotta, Kinya</creator><creator>Houk, Kendall N.</creator><creator>Tang, Yi</creator><creator>Watanabe, Kenji</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151102</creationdate><title>Involvement of Lipocalin-like CghA in Decalin-Forming Stereoselective Intramolecular [4+2] Cycloaddition</title><author>Sato, Michio ; Yagishita, Fumitoshi ; Mino, Takashi ; Uchiyama, Nahoko ; Patel, Ashay ; Chooi, Yit-Heng ; Goda, Yukihiro ; Xu, Wei ; Noguchi, Hiroshi ; Yamamoto, Tsuyoshi ; Hotta, Kinya ; Houk, Kendall N. ; Tang, Yi ; Watanabe, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6096-75a831632c3b85066168b61b231a00df04049a19fdcd13964c9f8e4f1855374a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aspergillus nidulans - enzymology</topic><topic>Aspergillus nidulans - genetics</topic><topic>cycloaddition</topic><topic>Cycloaddition Reaction</topic><topic>decalin</topic><topic>density functional calculations</topic><topic>fungal metabolite</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Lipocalins - chemistry</topic><topic>Lipocalins - metabolism</topic><topic>Molecular Conformation</topic><topic>Naphthalenes - chemical synthesis</topic><topic>Naphthalenes - chemistry</topic><topic>Natural products</topic><topic>Stereoisomerism</topic><topic>tetramic acid</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Michio</creatorcontrib><creatorcontrib>Yagishita, Fumitoshi</creatorcontrib><creatorcontrib>Mino, Takashi</creatorcontrib><creatorcontrib>Uchiyama, Nahoko</creatorcontrib><creatorcontrib>Patel, Ashay</creatorcontrib><creatorcontrib>Chooi, Yit-Heng</creatorcontrib><creatorcontrib>Goda, Yukihiro</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Noguchi, Hiroshi</creatorcontrib><creatorcontrib>Yamamoto, Tsuyoshi</creatorcontrib><creatorcontrib>Hotta, Kinya</creatorcontrib><creatorcontrib>Houk, Kendall N.</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Michio</au><au>Yagishita, Fumitoshi</au><au>Mino, Takashi</au><au>Uchiyama, Nahoko</au><au>Patel, Ashay</au><au>Chooi, Yit-Heng</au><au>Goda, Yukihiro</au><au>Xu, Wei</au><au>Noguchi, Hiroshi</au><au>Yamamoto, Tsuyoshi</au><au>Hotta, Kinya</au><au>Houk, Kendall N.</au><au>Tang, Yi</au><au>Watanabe, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of Lipocalin-like CghA in Decalin-Forming Stereoselective Intramolecular [4+2] Cycloaddition</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>ChemBioChem</addtitle><date>2015-11-02</date><risdate>2015</risdate><volume>16</volume><issue>16</issue><spage>2294</spage><epage>2298</epage><pages>2294-2298</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Understanding enzymatic Diels–Alder (DA) reactions that can form complex natural product scaffolds is of considerable interest. Sch 210972 1, a potential anti‐HIV fungal natural product, contains a decalin core that is proposed to form through a DA reaction. We identified the gene cluster responsible for the biosynthesis of 1 and heterologously reconstituted the biosynthetic pathway in Aspergillus nidulans to characterize the enzymes involved. Most notably, deletion of cghA resulted in a loss of stereoselective decalin core formation, yielding both an endo (1) and a diastereomeric exo adduct of the proposed DA reaction. Complementation with cghA restored the sole formation of 1. Density functional theory computation of the proposed DA reaction provided a plausible explanation of the observed pattern of product formation. Based on our study, we propose that lipocalin‐like CghA is responsible for the stereoselective intramolecular [4+2] cycloaddition that forms the decalin core of 1. Decalin decadence: The C. globosum gene cluster responsible for the biosynthesis of Sch 210972, a potential anti‐HIV fungal polyketide–nonribosomal peptide hybrid natural product, has been identified. Genetic, biochemical and computational studies revealed the function of four enzymes involved. Most notably, lipocalin‐like CghA facilitates a stereoselective intramolecular [4+2] cycloaddition to form the decalin core.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>26360642</pmid><doi>10.1002/cbic.201500386</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2015-11, Vol.16 (16), p.2294-2298
issn 1439-4227
1439-7633
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4915928
source Wiley-Blackwell Journals; MEDLINE
subjects Aspergillus nidulans - enzymology
Aspergillus nidulans - genetics
cycloaddition
Cycloaddition Reaction
decalin
density functional calculations
fungal metabolite
Fungal Proteins - genetics
Fungal Proteins - metabolism
Lipocalins - chemistry
Lipocalins - metabolism
Molecular Conformation
Naphthalenes - chemical synthesis
Naphthalenes - chemistry
Natural products
Stereoisomerism
tetramic acid
Thermodynamics
title Involvement of Lipocalin-like CghA in Decalin-Forming Stereoselective Intramolecular [4+2] Cycloaddition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20Lipocalin-like%20CghA%20in%20Decalin-Forming%20Stereoselective%20Intramolecular%20%5B4+2%5D%20Cycloaddition&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Sato,%20Michio&rft.date=2015-11-02&rft.volume=16&rft.issue=16&rft.spage=2294&rft.epage=2298&rft.pages=2294-2298&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201500386&rft_dat=%3Cproquest_pubme%3E1727438505%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1724653086&rft_id=info:pmid/26360642&rfr_iscdi=true