Cardiometabolic Risk Profiles in Patients With Impaired Fasting Glucose and/or Hemoglobin A1c 5.7% to 6.4%: Evidence for a Gradient According to Diagnostic Criteria: The PREDAPS Study

It has been suggested that the early detection of individuals with prediabetes can help prevent cardiovascular diseases. The purpose of the current study was to examine the cardiometabolic risk profile in patients with prediabetes according to fasting plasma glucose (FPG) and/or hemoglobin A1c (HbA1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicine (Baltimore) 2015-11, Vol.94 (44), p.e1935-e1935
Hauptverfasser: Giráldez-García, Carolina, Sangrós, F Javier, Díaz-Redondo, Alicia, Franch-Nadal, Josep, Serrano, Rosario, Díez, Javier, Buil-Cosiales, Pilar, García-Soidán, F Javier, Artola, Sara, Ezkurra, Patxi, Carrillo, Lourdes, Millaruelo, J Manuel, Seguí, Mateu, Martínez-Candela, Juan, Muñoz, Pedro, Goday, Albert, Regidor, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1935
container_issue 44
container_start_page e1935
container_title Medicine (Baltimore)
container_volume 94
creator Giráldez-García, Carolina
Sangrós, F Javier
Díaz-Redondo, Alicia
Franch-Nadal, Josep
Serrano, Rosario
Díez, Javier
Buil-Cosiales, Pilar
García-Soidán, F Javier
Artola, Sara
Ezkurra, Patxi
Carrillo, Lourdes
Millaruelo, J Manuel
Seguí, Mateu
Martínez-Candela, Juan
Muñoz, Pedro
Goday, Albert
Regidor, Enrique
description It has been suggested that the early detection of individuals with prediabetes can help prevent cardiovascular diseases. The purpose of the current study was to examine the cardiometabolic risk profile in patients with prediabetes according to fasting plasma glucose (FPG) and/or hemoglobin A1c (HbA1c) criteria.Cross-sectional analysis from the 2022 patients in the Cohort study in Primary Health Care on the Evolution of Patients with Prediabetes (PREDAPS Study) was developed. Four glycemic status groups were defined based on American Diabetes Association criteria. Information about cardiovascular risk factors-body mass index, waist circumference, blood pressure, cholesterol, triglycerides, uric acid, gamma-glutamyltransferase, glomerular filtration-and metabolic syndrome components were analyzed. Mean values of clinical and biochemical characteristics and frequencies of metabolic syndrome were estimated adjusting by age, sex, educational level, and family history of diabetes.A linear trend (P 
doi_str_mv 10.1097/MD.0000000000001935
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4915900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1732600678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-68cebb890715b7650f72762f204d2a77c14e94eb41ad4b851fdd5fe6e54209963</originalsourceid><addsrcrecordid>eNpdkt9q2zAYxc3YWLtuTzAYuinsJqkk60_Ui0FI0rTQstB27FLI8udEm22lklzok-31pqxZ6CYQQuic33cEpyg-EjwmWMmzm_kYv1hElfxVcUx4KUZcCfa6OMaY8pFUkh0V72L8kTWlpOxtcUQF50wqdVz8mplQO99BMpVvnUW3Lv5Eq-Ab10JErkcrkxz0KaLvLm3QVbc1LkCNLkxMrl-jZTtYHwGZvj7zAV1C59etr7JxSiziY3mKkkdizE7P0eLR1dBbQE1WGrQMpt6h0dRan1NkWpbOnVn3PsMtmgWXIDhzju43gFa3i_l0dYfu0lA_vS_eNKaN8GF_nhTfLhb3s8vR9dfl1Wx6PbJ0QtNITCxU1URhSXglBceNpFLQhmJWUyOlJQwUg4oRU7NqwklT17wBAZxRrJQoT4ovz9ztUHVQ2xw3mFZvg-tMeNLeOP3vS-82eu0fNVOEK4wzgDwDbBysDmAhWJP-GA-X3aZYUk2FoJhnz-f90OAfBohJdy5aaFvTgx-iJrKkAmMhJ1la7vHBxxigOUQjWO9qom_m-v-aZNenl786eP72ovwNnWm4Lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732600678</pqid></control><display><type>article</type><title>Cardiometabolic Risk Profiles in Patients With Impaired Fasting Glucose and/or Hemoglobin A1c 5.7% to 6.4%: Evidence for a Gradient According to Diagnostic Criteria: The PREDAPS Study</title><source>Wolters Kluwer Open Health</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>IngentaConnect Free/Open Access Journals</source><source>Recercat</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Giráldez-García, Carolina ; Sangrós, F Javier ; Díaz-Redondo, Alicia ; Franch-Nadal, Josep ; Serrano, Rosario ; Díez, Javier ; Buil-Cosiales, Pilar ; García-Soidán, F Javier ; Artola, Sara ; Ezkurra, Patxi ; Carrillo, Lourdes ; Millaruelo, J Manuel ; Seguí, Mateu ; Martínez-Candela, Juan ; Muñoz, Pedro ; Goday, Albert ; Regidor, Enrique</creator><creatorcontrib>Giráldez-García, Carolina ; Sangrós, F Javier ; Díaz-Redondo, Alicia ; Franch-Nadal, Josep ; Serrano, Rosario ; Díez, Javier ; Buil-Cosiales, Pilar ; García-Soidán, F Javier ; Artola, Sara ; Ezkurra, Patxi ; Carrillo, Lourdes ; Millaruelo, J Manuel ; Seguí, Mateu ; Martínez-Candela, Juan ; Muñoz, Pedro ; Goday, Albert ; Regidor, Enrique ; PREDAPS Study Group</creatorcontrib><description>It has been suggested that the early detection of individuals with prediabetes can help prevent cardiovascular diseases. The purpose of the current study was to examine the cardiometabolic risk profile in patients with prediabetes according to fasting plasma glucose (FPG) and/or hemoglobin A1c (HbA1c) criteria.Cross-sectional analysis from the 2022 patients in the Cohort study in Primary Health Care on the Evolution of Patients with Prediabetes (PREDAPS Study) was developed. Four glycemic status groups were defined based on American Diabetes Association criteria. Information about cardiovascular risk factors-body mass index, waist circumference, blood pressure, cholesterol, triglycerides, uric acid, gamma-glutamyltransferase, glomerular filtration-and metabolic syndrome components were analyzed. Mean values of clinical and biochemical characteristics and frequencies of metabolic syndrome were estimated adjusting by age, sex, educational level, and family history of diabetes.A linear trend (P &lt; 0.001) was observed in most of the cardiovascular risk factors and in all components of metabolic syndrome. Normoglycemic individuals had the best values, individuals with both criteria of prediabetes had the worst, and individuals with only one-HbA1c or FPG-criterion had an intermediate position. Metabolic syndrome was present in 15.0% (95% confidence interval: 12.6-17.4), 59.5% (54.0-64.9), 62.0% (56.0-68.0), and 76.2% (72.8-79.6) of individuals classified in normoglycemia, isolated HbA1c, isolated FPG, and both criteria groups, respectively.In conclusion, individuals with prediabetes, especially those with both criteria, have worse cardiometabolic risk profile than normoglycemic individuals. These results suggest the need to use both criteria in the clinical practice to identify those individuals with the highest cardiovascular risk, in order to offer them special attention with intensive lifestyle intervention programs.</description><identifier>ISSN: 0025-7974</identifier><identifier>EISSN: 1536-5964</identifier><identifier>DOI: 10.1097/MD.0000000000001935</identifier><identifier>PMID: 26554799</identifier><language>eng</language><publisher>United States: Lippincott, Williams &amp; Wilkins. Wolters Kluwer Health</publisher><subject>Adult ; Aged ; Blood Glucose - metabolism ; Blood sugar ; Body Mass Index ; Cardiovascular diseases ; Cardiovascular Diseases - blood ; Cardiovascular Diseases - diagnosis ; Cardiovascular Diseases - etiology ; Case studies ; Cross-Sectional Studies ; Diagnosis, Differential ; Estudi de casos ; Factors de risc en les malalties ; Fasting - blood ; Female ; Follow-Up Studies ; Glucèmia ; Glycated Hemoglobin A - metabolism ; Humans ; Malalties cardiovasculars ; Male ; Middle Aged ; Observational Study ; Prediabetic State - blood ; Prediabetic State - complications ; Risk Factors ; Risk factors in diseases</subject><ispartof>Medicine (Baltimore), 2015-11, Vol.94 (44), p.e1935-e1935</ispartof><rights>cc-by (c) Giráldez-García, C. et al., 2015 info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by/3.0/es"&gt;http://creativecommons.org/licenses/by/3.0/es&lt;/a&gt;</rights><rights>Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-68cebb890715b7650f72762f204d2a77c14e94eb41ad4b851fdd5fe6e54209963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915900/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915900/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,26951,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26554799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giráldez-García, Carolina</creatorcontrib><creatorcontrib>Sangrós, F Javier</creatorcontrib><creatorcontrib>Díaz-Redondo, Alicia</creatorcontrib><creatorcontrib>Franch-Nadal, Josep</creatorcontrib><creatorcontrib>Serrano, Rosario</creatorcontrib><creatorcontrib>Díez, Javier</creatorcontrib><creatorcontrib>Buil-Cosiales, Pilar</creatorcontrib><creatorcontrib>García-Soidán, F Javier</creatorcontrib><creatorcontrib>Artola, Sara</creatorcontrib><creatorcontrib>Ezkurra, Patxi</creatorcontrib><creatorcontrib>Carrillo, Lourdes</creatorcontrib><creatorcontrib>Millaruelo, J Manuel</creatorcontrib><creatorcontrib>Seguí, Mateu</creatorcontrib><creatorcontrib>Martínez-Candela, Juan</creatorcontrib><creatorcontrib>Muñoz, Pedro</creatorcontrib><creatorcontrib>Goday, Albert</creatorcontrib><creatorcontrib>Regidor, Enrique</creatorcontrib><creatorcontrib>PREDAPS Study Group</creatorcontrib><title>Cardiometabolic Risk Profiles in Patients With Impaired Fasting Glucose and/or Hemoglobin A1c 5.7% to 6.4%: Evidence for a Gradient According to Diagnostic Criteria: The PREDAPS Study</title><title>Medicine (Baltimore)</title><addtitle>Medicine (Baltimore)</addtitle><description>It has been suggested that the early detection of individuals with prediabetes can help prevent cardiovascular diseases. The purpose of the current study was to examine the cardiometabolic risk profile in patients with prediabetes according to fasting plasma glucose (FPG) and/or hemoglobin A1c (HbA1c) criteria.Cross-sectional analysis from the 2022 patients in the Cohort study in Primary Health Care on the Evolution of Patients with Prediabetes (PREDAPS Study) was developed. Four glycemic status groups were defined based on American Diabetes Association criteria. Information about cardiovascular risk factors-body mass index, waist circumference, blood pressure, cholesterol, triglycerides, uric acid, gamma-glutamyltransferase, glomerular filtration-and metabolic syndrome components were analyzed. Mean values of clinical and biochemical characteristics and frequencies of metabolic syndrome were estimated adjusting by age, sex, educational level, and family history of diabetes.A linear trend (P &lt; 0.001) was observed in most of the cardiovascular risk factors and in all components of metabolic syndrome. Normoglycemic individuals had the best values, individuals with both criteria of prediabetes had the worst, and individuals with only one-HbA1c or FPG-criterion had an intermediate position. Metabolic syndrome was present in 15.0% (95% confidence interval: 12.6-17.4), 59.5% (54.0-64.9), 62.0% (56.0-68.0), and 76.2% (72.8-79.6) of individuals classified in normoglycemia, isolated HbA1c, isolated FPG, and both criteria groups, respectively.In conclusion, individuals with prediabetes, especially those with both criteria, have worse cardiometabolic risk profile than normoglycemic individuals. These results suggest the need to use both criteria in the clinical practice to identify those individuals with the highest cardiovascular risk, in order to offer them special attention with intensive lifestyle intervention programs.</description><subject>Adult</subject><subject>Aged</subject><subject>Blood Glucose - metabolism</subject><subject>Blood sugar</subject><subject>Body Mass Index</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular Diseases - blood</subject><subject>Cardiovascular Diseases - diagnosis</subject><subject>Cardiovascular Diseases - etiology</subject><subject>Case studies</subject><subject>Cross-Sectional Studies</subject><subject>Diagnosis, Differential</subject><subject>Estudi de casos</subject><subject>Factors de risc en les malalties</subject><subject>Fasting - blood</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Glucèmia</subject><subject>Glycated Hemoglobin A - metabolism</subject><subject>Humans</subject><subject>Malalties cardiovasculars</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Observational Study</subject><subject>Prediabetic State - blood</subject><subject>Prediabetic State - complications</subject><subject>Risk Factors</subject><subject>Risk factors in diseases</subject><issn>0025-7974</issn><issn>1536-5964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNpdkt9q2zAYxc3YWLtuTzAYuinsJqkk60_Ui0FI0rTQstB27FLI8udEm22lklzok-31pqxZ6CYQQuic33cEpyg-EjwmWMmzm_kYv1hElfxVcUx4KUZcCfa6OMaY8pFUkh0V72L8kTWlpOxtcUQF50wqdVz8mplQO99BMpVvnUW3Lv5Eq-Ab10JErkcrkxz0KaLvLm3QVbc1LkCNLkxMrl-jZTtYHwGZvj7zAV1C59etr7JxSiziY3mKkkdizE7P0eLR1dBbQE1WGrQMpt6h0dRan1NkWpbOnVn3PsMtmgWXIDhzju43gFa3i_l0dYfu0lA_vS_eNKaN8GF_nhTfLhb3s8vR9dfl1Wx6PbJ0QtNITCxU1URhSXglBceNpFLQhmJWUyOlJQwUg4oRU7NqwklT17wBAZxRrJQoT4ovz9ztUHVQ2xw3mFZvg-tMeNLeOP3vS-82eu0fNVOEK4wzgDwDbBysDmAhWJP-GA-X3aZYUk2FoJhnz-f90OAfBohJdy5aaFvTgx-iJrKkAmMhJ1la7vHBxxigOUQjWO9qom_m-v-aZNenl786eP72ovwNnWm4Lg</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Giráldez-García, Carolina</creator><creator>Sangrós, F Javier</creator><creator>Díaz-Redondo, Alicia</creator><creator>Franch-Nadal, Josep</creator><creator>Serrano, Rosario</creator><creator>Díez, Javier</creator><creator>Buil-Cosiales, Pilar</creator><creator>García-Soidán, F Javier</creator><creator>Artola, Sara</creator><creator>Ezkurra, Patxi</creator><creator>Carrillo, Lourdes</creator><creator>Millaruelo, J Manuel</creator><creator>Seguí, Mateu</creator><creator>Martínez-Candela, Juan</creator><creator>Muñoz, Pedro</creator><creator>Goday, Albert</creator><creator>Regidor, Enrique</creator><general>Lippincott, Williams &amp; Wilkins. Wolters Kluwer Health</general><general>Wolters Kluwer Health</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>20151101</creationdate><title>Cardiometabolic Risk Profiles in Patients With Impaired Fasting Glucose and/or Hemoglobin A1c 5.7% to 6.4%: Evidence for a Gradient According to Diagnostic Criteria: The PREDAPS Study</title><author>Giráldez-García, Carolina ; Sangrós, F Javier ; Díaz-Redondo, Alicia ; Franch-Nadal, Josep ; Serrano, Rosario ; Díez, Javier ; Buil-Cosiales, Pilar ; García-Soidán, F Javier ; Artola, Sara ; Ezkurra, Patxi ; Carrillo, Lourdes ; Millaruelo, J Manuel ; Seguí, Mateu ; Martínez-Candela, Juan ; Muñoz, Pedro ; Goday, Albert ; Regidor, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-68cebb890715b7650f72762f204d2a77c14e94eb41ad4b851fdd5fe6e54209963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Blood Glucose - metabolism</topic><topic>Blood sugar</topic><topic>Body Mass Index</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular Diseases - blood</topic><topic>Cardiovascular Diseases - diagnosis</topic><topic>Cardiovascular Diseases - etiology</topic><topic>Case studies</topic><topic>Cross-Sectional Studies</topic><topic>Diagnosis, Differential</topic><topic>Estudi de casos</topic><topic>Factors de risc en les malalties</topic><topic>Fasting - blood</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Glucèmia</topic><topic>Glycated Hemoglobin A - metabolism</topic><topic>Humans</topic><topic>Malalties cardiovasculars</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Observational Study</topic><topic>Prediabetic State - blood</topic><topic>Prediabetic State - complications</topic><topic>Risk Factors</topic><topic>Risk factors in diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giráldez-García, Carolina</creatorcontrib><creatorcontrib>Sangrós, F Javier</creatorcontrib><creatorcontrib>Díaz-Redondo, Alicia</creatorcontrib><creatorcontrib>Franch-Nadal, Josep</creatorcontrib><creatorcontrib>Serrano, Rosario</creatorcontrib><creatorcontrib>Díez, Javier</creatorcontrib><creatorcontrib>Buil-Cosiales, Pilar</creatorcontrib><creatorcontrib>García-Soidán, F Javier</creatorcontrib><creatorcontrib>Artola, Sara</creatorcontrib><creatorcontrib>Ezkurra, Patxi</creatorcontrib><creatorcontrib>Carrillo, Lourdes</creatorcontrib><creatorcontrib>Millaruelo, J Manuel</creatorcontrib><creatorcontrib>Seguí, Mateu</creatorcontrib><creatorcontrib>Martínez-Candela, Juan</creatorcontrib><creatorcontrib>Muñoz, Pedro</creatorcontrib><creatorcontrib>Goday, Albert</creatorcontrib><creatorcontrib>Regidor, Enrique</creatorcontrib><creatorcontrib>PREDAPS Study Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medicine (Baltimore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giráldez-García, Carolina</au><au>Sangrós, F Javier</au><au>Díaz-Redondo, Alicia</au><au>Franch-Nadal, Josep</au><au>Serrano, Rosario</au><au>Díez, Javier</au><au>Buil-Cosiales, Pilar</au><au>García-Soidán, F Javier</au><au>Artola, Sara</au><au>Ezkurra, Patxi</au><au>Carrillo, Lourdes</au><au>Millaruelo, J Manuel</au><au>Seguí, Mateu</au><au>Martínez-Candela, Juan</au><au>Muñoz, Pedro</au><au>Goday, Albert</au><au>Regidor, Enrique</au><aucorp>PREDAPS Study Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiometabolic Risk Profiles in Patients With Impaired Fasting Glucose and/or Hemoglobin A1c 5.7% to 6.4%: Evidence for a Gradient According to Diagnostic Criteria: The PREDAPS Study</atitle><jtitle>Medicine (Baltimore)</jtitle><addtitle>Medicine (Baltimore)</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>94</volume><issue>44</issue><spage>e1935</spage><epage>e1935</epage><pages>e1935-e1935</pages><issn>0025-7974</issn><eissn>1536-5964</eissn><abstract>It has been suggested that the early detection of individuals with prediabetes can help prevent cardiovascular diseases. The purpose of the current study was to examine the cardiometabolic risk profile in patients with prediabetes according to fasting plasma glucose (FPG) and/or hemoglobin A1c (HbA1c) criteria.Cross-sectional analysis from the 2022 patients in the Cohort study in Primary Health Care on the Evolution of Patients with Prediabetes (PREDAPS Study) was developed. Four glycemic status groups were defined based on American Diabetes Association criteria. Information about cardiovascular risk factors-body mass index, waist circumference, blood pressure, cholesterol, triglycerides, uric acid, gamma-glutamyltransferase, glomerular filtration-and metabolic syndrome components were analyzed. Mean values of clinical and biochemical characteristics and frequencies of metabolic syndrome were estimated adjusting by age, sex, educational level, and family history of diabetes.A linear trend (P &lt; 0.001) was observed in most of the cardiovascular risk factors and in all components of metabolic syndrome. Normoglycemic individuals had the best values, individuals with both criteria of prediabetes had the worst, and individuals with only one-HbA1c or FPG-criterion had an intermediate position. Metabolic syndrome was present in 15.0% (95% confidence interval: 12.6-17.4), 59.5% (54.0-64.9), 62.0% (56.0-68.0), and 76.2% (72.8-79.6) of individuals classified in normoglycemia, isolated HbA1c, isolated FPG, and both criteria groups, respectively.In conclusion, individuals with prediabetes, especially those with both criteria, have worse cardiometabolic risk profile than normoglycemic individuals. These results suggest the need to use both criteria in the clinical practice to identify those individuals with the highest cardiovascular risk, in order to offer them special attention with intensive lifestyle intervention programs.</abstract><cop>United States</cop><pub>Lippincott, Williams &amp; Wilkins. Wolters Kluwer Health</pub><pmid>26554799</pmid><doi>10.1097/MD.0000000000001935</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-7974
ispartof Medicine (Baltimore), 2015-11, Vol.94 (44), p.e1935-e1935
issn 0025-7974
1536-5964
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4915900
source Wolters Kluwer Open Health; MEDLINE; DOAJ Directory of Open Access Journals; IngentaConnect Free/Open Access Journals; Recercat; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adult
Aged
Blood Glucose - metabolism
Blood sugar
Body Mass Index
Cardiovascular diseases
Cardiovascular Diseases - blood
Cardiovascular Diseases - diagnosis
Cardiovascular Diseases - etiology
Case studies
Cross-Sectional Studies
Diagnosis, Differential
Estudi de casos
Factors de risc en les malalties
Fasting - blood
Female
Follow-Up Studies
Glucèmia
Glycated Hemoglobin A - metabolism
Humans
Malalties cardiovasculars
Male
Middle Aged
Observational Study
Prediabetic State - blood
Prediabetic State - complications
Risk Factors
Risk factors in diseases
title Cardiometabolic Risk Profiles in Patients With Impaired Fasting Glucose and/or Hemoglobin A1c 5.7% to 6.4%: Evidence for a Gradient According to Diagnostic Criteria: The PREDAPS Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiometabolic%20Risk%20Profiles%20in%20Patients%20With%20Impaired%20Fasting%20Glucose%20and/or%20Hemoglobin%20A1c%205.7%25%20to%206.4%25:%20Evidence%20for%20a%20Gradient%20According%20to%20Diagnostic%20Criteria:%20The%20PREDAPS%20Study&rft.jtitle=Medicine%20(Baltimore)&rft.au=Gir%C3%A1ldez-Garc%C3%ADa,%20Carolina&rft.aucorp=PREDAPS%20Study%20Group&rft.date=2015-11-01&rft.volume=94&rft.issue=44&rft.spage=e1935&rft.epage=e1935&rft.pages=e1935-e1935&rft.issn=0025-7974&rft.eissn=1536-5964&rft_id=info:doi/10.1097/MD.0000000000001935&rft_dat=%3Cproquest_pubme%3E1732600678%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732600678&rft_id=info:pmid/26554799&rfr_iscdi=true