Local potentiation of stress-responsive genes by upstream noncoding transcription

It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2016-06, Vol.44 (11), p.5174-5189
Hauptverfasser: Takemata, Naomichi, Oda, Arisa, Yamada, Takatomi, Galipon, Josephine, Miyoshi, Tomoichiro, Suzuki, Yutaka, Sugano, Sumio, Hoffman, Charles S, Hirota, Kouji, Ohta, Kunihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5189
container_issue 11
container_start_page 5174
container_title Nucleic acids research
container_volume 44
creator Takemata, Naomichi
Oda, Arisa
Yamada, Takatomi
Galipon, Josephine
Miyoshi, Tomoichiro
Suzuki, Yutaka
Sugano, Sumio
Hoffman, Charles S
Hirota, Kouji
Ohta, Kunihiro
description It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression. Here, we demonstrate that such upstream noncoding transcription facilitates promoter association of the stress-responsive transcriptional activator Atf1 at the sites of transcription, leading to activation of the downstream stress genes. Genome-wide analyses revealed that ∼50 Atf1-binding sites show marked decrease in Atf1 occupancy when cells are treated with a transcription inhibitor. Most of these transcription-enhanced Atf1-binding sites are associated with stress-dependent induction of the adjacent mRNAs or lncRNAs, as observed in fbp1 These Atf1-binding sites exhibit low Atf1 occupancy and high histone density in glucose-rich conditions, and undergo dramatic changes in chromatin status after glucose depletion: enhanced Atf1 binding, histone eviction, and histone H3 acetylation. We also found that upstream transcripts bind to the Groucho-Tup1 type transcriptional corepressors Tup11 and Tup12, and locally antagonize their repressive functions on Atf1 binding. These results reveal a new mechanism in which upstream noncoding transcription locally magnifies the specific activation of stress-inducible genes via counteraction of corepressors.
doi_str_mv 10.1093/nar/gkw142
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4914089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1798996709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-49206c4c8152e85d47017ae0ca7b724ebcc4bc5b933a667ef60ed4d66bebc9b33</originalsourceid><addsrcrecordid>eNqNkU9LxDAQxYMo7rp68QNIjyLUnbRp0lwEWfwHCyLoOaRpWqPdpCbtyn57W1YXvXmZObzfPN7wEDrFcImBp3Mr_bx-_8Qk2UNTnNIkJpwm-2gKKWQxBpJP0FEIbwCY4IwcoklCOcmAwBQ9LZ2STdS6TtvOyM44G7kqCp3XIcTDaJ0NZq2jWlsdomIT9e0oylVknVWuNLaOOi9tUN604_kxOqhkE_TJ956hl9ub58V9vHy8e1hcL2NFGOuGiAlQRVSOs0TnWUkYYCY1KMkKlhBdKEUKlRU8TSWlTFcUdElKSotB4kWaztDV1rfti5Uu1ZDfy0a03qyk3wgnjfirWPMqarcWhGMCOR8Mzr8NvPvodejEygSlm0Za7fogcA455ZBk_0AZzzmnDEb0Yosq70LwutolwiDGusRQl9jWNcBnv3_YoT_9pF9865SW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798996709</pqid></control><display><type>article</type><title>Local potentiation of stress-responsive genes by upstream noncoding transcription</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Takemata, Naomichi ; Oda, Arisa ; Yamada, Takatomi ; Galipon, Josephine ; Miyoshi, Tomoichiro ; Suzuki, Yutaka ; Sugano, Sumio ; Hoffman, Charles S ; Hirota, Kouji ; Ohta, Kunihiro</creator><creatorcontrib>Takemata, Naomichi ; Oda, Arisa ; Yamada, Takatomi ; Galipon, Josephine ; Miyoshi, Tomoichiro ; Suzuki, Yutaka ; Sugano, Sumio ; Hoffman, Charles S ; Hirota, Kouji ; Ohta, Kunihiro</creatorcontrib><description>It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression. Here, we demonstrate that such upstream noncoding transcription facilitates promoter association of the stress-responsive transcriptional activator Atf1 at the sites of transcription, leading to activation of the downstream stress genes. Genome-wide analyses revealed that ∼50 Atf1-binding sites show marked decrease in Atf1 occupancy when cells are treated with a transcription inhibitor. Most of these transcription-enhanced Atf1-binding sites are associated with stress-dependent induction of the adjacent mRNAs or lncRNAs, as observed in fbp1 These Atf1-binding sites exhibit low Atf1 occupancy and high histone density in glucose-rich conditions, and undergo dramatic changes in chromatin status after glucose depletion: enhanced Atf1 binding, histone eviction, and histone H3 acetylation. We also found that upstream transcripts bind to the Groucho-Tup1 type transcriptional corepressors Tup11 and Tup12, and locally antagonize their repressive functions on Atf1 binding. These results reveal a new mechanism in which upstream noncoding transcription locally magnifies the specific activation of stress-inducible genes via counteraction of corepressors.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkw142</identifier><identifier>PMID: 26945040</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acetylation ; Chromatin Assembly and Disassembly ; Chromatin Immunoprecipitation ; Gene Expression Regulation ; Gene Expression Regulation, Fungal ; Gene regulation, Chromatin and Epigenetics ; Glucose - metabolism ; High-Throughput Nucleotide Sequencing ; Histones - metabolism ; Protein Binding ; Regulatory Sequences, Nucleic Acid ; RNA, Untranslated - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Schizosaccharomyces pombe ; Stress, Physiological - genetics ; Transcription, Genetic</subject><ispartof>Nucleic acids research, 2016-06, Vol.44 (11), p.5174-5189</ispartof><rights>The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-49206c4c8152e85d47017ae0ca7b724ebcc4bc5b933a667ef60ed4d66bebc9b33</citedby><cites>FETCH-LOGICAL-c477t-49206c4c8152e85d47017ae0ca7b724ebcc4bc5b933a667ef60ed4d66bebc9b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914089/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914089/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26945040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takemata, Naomichi</creatorcontrib><creatorcontrib>Oda, Arisa</creatorcontrib><creatorcontrib>Yamada, Takatomi</creatorcontrib><creatorcontrib>Galipon, Josephine</creatorcontrib><creatorcontrib>Miyoshi, Tomoichiro</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Sugano, Sumio</creatorcontrib><creatorcontrib>Hoffman, Charles S</creatorcontrib><creatorcontrib>Hirota, Kouji</creatorcontrib><creatorcontrib>Ohta, Kunihiro</creatorcontrib><title>Local potentiation of stress-responsive genes by upstream noncoding transcription</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression. Here, we demonstrate that such upstream noncoding transcription facilitates promoter association of the stress-responsive transcriptional activator Atf1 at the sites of transcription, leading to activation of the downstream stress genes. Genome-wide analyses revealed that ∼50 Atf1-binding sites show marked decrease in Atf1 occupancy when cells are treated with a transcription inhibitor. Most of these transcription-enhanced Atf1-binding sites are associated with stress-dependent induction of the adjacent mRNAs or lncRNAs, as observed in fbp1 These Atf1-binding sites exhibit low Atf1 occupancy and high histone density in glucose-rich conditions, and undergo dramatic changes in chromatin status after glucose depletion: enhanced Atf1 binding, histone eviction, and histone H3 acetylation. We also found that upstream transcripts bind to the Groucho-Tup1 type transcriptional corepressors Tup11 and Tup12, and locally antagonize their repressive functions on Atf1 binding. These results reveal a new mechanism in which upstream noncoding transcription locally magnifies the specific activation of stress-inducible genes via counteraction of corepressors.</description><subject>Acetylation</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Chromatin Immunoprecipitation</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>Glucose - metabolism</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Histones - metabolism</subject><subject>Protein Binding</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>RNA, Untranslated - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Stress, Physiological - genetics</subject><subject>Transcription, Genetic</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9LxDAQxYMo7rp68QNIjyLUnbRp0lwEWfwHCyLoOaRpWqPdpCbtyn57W1YXvXmZObzfPN7wEDrFcImBp3Mr_bx-_8Qk2UNTnNIkJpwm-2gKKWQxBpJP0FEIbwCY4IwcoklCOcmAwBQ9LZ2STdS6TtvOyM44G7kqCp3XIcTDaJ0NZq2jWlsdomIT9e0oylVknVWuNLaOOi9tUN604_kxOqhkE_TJ956hl9ub58V9vHy8e1hcL2NFGOuGiAlQRVSOs0TnWUkYYCY1KMkKlhBdKEUKlRU8TSWlTFcUdElKSotB4kWaztDV1rfti5Uu1ZDfy0a03qyk3wgnjfirWPMqarcWhGMCOR8Mzr8NvPvodejEygSlm0Za7fogcA455ZBk_0AZzzmnDEb0Yosq70LwutolwiDGusRQl9jWNcBnv3_YoT_9pF9865SW</recordid><startdate>20160620</startdate><enddate>20160620</enddate><creator>Takemata, Naomichi</creator><creator>Oda, Arisa</creator><creator>Yamada, Takatomi</creator><creator>Galipon, Josephine</creator><creator>Miyoshi, Tomoichiro</creator><creator>Suzuki, Yutaka</creator><creator>Sugano, Sumio</creator><creator>Hoffman, Charles S</creator><creator>Hirota, Kouji</creator><creator>Ohta, Kunihiro</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160620</creationdate><title>Local potentiation of stress-responsive genes by upstream noncoding transcription</title><author>Takemata, Naomichi ; Oda, Arisa ; Yamada, Takatomi ; Galipon, Josephine ; Miyoshi, Tomoichiro ; Suzuki, Yutaka ; Sugano, Sumio ; Hoffman, Charles S ; Hirota, Kouji ; Ohta, Kunihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-49206c4c8152e85d47017ae0ca7b724ebcc4bc5b933a667ef60ed4d66bebc9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetylation</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Chromatin Immunoprecipitation</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>Glucose - metabolism</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Histones - metabolism</topic><topic>Protein Binding</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>RNA, Untranslated - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Stress, Physiological - genetics</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takemata, Naomichi</creatorcontrib><creatorcontrib>Oda, Arisa</creatorcontrib><creatorcontrib>Yamada, Takatomi</creatorcontrib><creatorcontrib>Galipon, Josephine</creatorcontrib><creatorcontrib>Miyoshi, Tomoichiro</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Sugano, Sumio</creatorcontrib><creatorcontrib>Hoffman, Charles S</creatorcontrib><creatorcontrib>Hirota, Kouji</creatorcontrib><creatorcontrib>Ohta, Kunihiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takemata, Naomichi</au><au>Oda, Arisa</au><au>Yamada, Takatomi</au><au>Galipon, Josephine</au><au>Miyoshi, Tomoichiro</au><au>Suzuki, Yutaka</au><au>Sugano, Sumio</au><au>Hoffman, Charles S</au><au>Hirota, Kouji</au><au>Ohta, Kunihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local potentiation of stress-responsive genes by upstream noncoding transcription</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2016-06-20</date><risdate>2016</risdate><volume>44</volume><issue>11</issue><spage>5174</spage><epage>5189</epage><pages>5174-5189</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression. Here, we demonstrate that such upstream noncoding transcription facilitates promoter association of the stress-responsive transcriptional activator Atf1 at the sites of transcription, leading to activation of the downstream stress genes. Genome-wide analyses revealed that ∼50 Atf1-binding sites show marked decrease in Atf1 occupancy when cells are treated with a transcription inhibitor. Most of these transcription-enhanced Atf1-binding sites are associated with stress-dependent induction of the adjacent mRNAs or lncRNAs, as observed in fbp1 These Atf1-binding sites exhibit low Atf1 occupancy and high histone density in glucose-rich conditions, and undergo dramatic changes in chromatin status after glucose depletion: enhanced Atf1 binding, histone eviction, and histone H3 acetylation. We also found that upstream transcripts bind to the Groucho-Tup1 type transcriptional corepressors Tup11 and Tup12, and locally antagonize their repressive functions on Atf1 binding. These results reveal a new mechanism in which upstream noncoding transcription locally magnifies the specific activation of stress-inducible genes via counteraction of corepressors.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26945040</pmid><doi>10.1093/nar/gkw142</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2016-06, Vol.44 (11), p.5174-5189
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4914089
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetylation
Chromatin Assembly and Disassembly
Chromatin Immunoprecipitation
Gene Expression Regulation
Gene Expression Regulation, Fungal
Gene regulation, Chromatin and Epigenetics
Glucose - metabolism
High-Throughput Nucleotide Sequencing
Histones - metabolism
Protein Binding
Regulatory Sequences, Nucleic Acid
RNA, Untranslated - genetics
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Schizosaccharomyces pombe
Stress, Physiological - genetics
Transcription, Genetic
title Local potentiation of stress-responsive genes by upstream noncoding transcription
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20potentiation%20of%20stress-responsive%20genes%20by%20upstream%20noncoding%20transcription&rft.jtitle=Nucleic%20acids%20research&rft.au=Takemata,%20Naomichi&rft.date=2016-06-20&rft.volume=44&rft.issue=11&rft.spage=5174&rft.epage=5189&rft.pages=5174-5189&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkw142&rft_dat=%3Cproquest_pubme%3E1798996709%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798996709&rft_id=info:pmid/26945040&rfr_iscdi=true