Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells
Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR–ABL. Direct inhibition of BCR–ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independen...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2016-06, Vol.534 (7607), p.341-346 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 7607 |
container_start_page | 341 |
container_title | Nature (London) |
container_volume | 534 |
creator | Abraham, Sheela A. Hopcroft, Lisa E. M. Carrick, Emma Drotar, Mark E. Dunn, Karen Williamson, Andrew J. K. Korfi, Koorosh Baquero, Pablo Park, Laura E. Scott, Mary T. Pellicano, Francesca Pierce, Andrew Copland, Mhairi Nourse, Craig Grimmond, Sean M. Vetrie, David Whetton, Anthony D. Holyoake, Tessa L. |
description | Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR–ABL. Direct inhibition of BCR–ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR–ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show—using proteomics, transcriptomics and network analyses—that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR–ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated.
Leukaemic stem cells (LSCs) are responsible for BCR–ABL-driven chronic myeloid leukaemia relapse; here, p53 and MYC signalling networks are shown to regulate LSCs concurrently, and targeting both these pathways has a synergistic effect in managing the disease.
Dual targeting of p53 and c-Myc pathways
Tyrosine kinase inhibitors are a first-line therapy in patients with chronic myeloid leukaemia (CML), where they target the oncogenic
BCR-ABL
fusion gene. However, relapse inevitably occurs, probably driven by a drug-resistant population of leukaemic stem cells (LSCs). This study uncovers the concurrent involvement of p53 and Myc signalling networks in regulating LSCs. The authors demonstrate that genetic and/or pharmacological targeting of both the p53 and c-Myc pathways achieves more effective disease neutralization in mouse and human cell models of CML. |
doi_str_mv | 10.1038/nature18288 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4913876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A455613278</galeid><sourcerecordid>A455613278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c714t-991b2df67f9f2a61ce90ac5934bffd40b48960fdbd0e841f68dc195e047c1e4c3</originalsourceid><addsrcrecordid>eNp10t9v1SAUB_DGaNzd9Ml3Q_RFo51AaYEXk5s7fyxOTXTG-ES49FCZLb0rdHH_vdTNea-p5aFJ-fClcE6WPSD4kOBCvPA6jgMQQYW4lS0I41XOKsFvZwuMqcixKKq9bD-EM4xxSTi7m-1RTgWhlC6yd0ejblHUQwPR-Qb1Fm3KAmlfI5O__7ZCAVow0V1Ae4mgdZ1L20FALYw_NHTOoBChQwbaNtzL7ljdBrh__T7Ivrx-dbp6m598fHO8Wp7khhMWcynJmta24lZaqitiQGJtSlmwtbU1w2smZIVtva4xCEZsJWpDZAmYcUOAmeIge3mVuxnXHdQGfBx0qzaD6_RwqXrt1O6Md99V018oJkkheJUCnlwHDP35CCGqzoXpCNpDPwZFuOSCF-lGE338Dz3rx8Gn4_1WlWTp-asa3YJy3vZpXzOFqiUry4oUlE9Z-YxqwEP6yd6Ddenzjn80483GnattdDiD0qin6symPt1ZkEyEn7HRYwjq-POnXfvs_3Z5-nX1YVaboQ9hAHtTEoLV1Kpqq1WTfrhdxRv7pzcTeH4FQpryDQxbVz-T9wuIJe-m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797694444</pqid></control><display><type>article</type><title>Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Abraham, Sheela A. ; Hopcroft, Lisa E. M. ; Carrick, Emma ; Drotar, Mark E. ; Dunn, Karen ; Williamson, Andrew J. K. ; Korfi, Koorosh ; Baquero, Pablo ; Park, Laura E. ; Scott, Mary T. ; Pellicano, Francesca ; Pierce, Andrew ; Copland, Mhairi ; Nourse, Craig ; Grimmond, Sean M. ; Vetrie, David ; Whetton, Anthony D. ; Holyoake, Tessa L.</creator><creatorcontrib>Abraham, Sheela A. ; Hopcroft, Lisa E. M. ; Carrick, Emma ; Drotar, Mark E. ; Dunn, Karen ; Williamson, Andrew J. K. ; Korfi, Koorosh ; Baquero, Pablo ; Park, Laura E. ; Scott, Mary T. ; Pellicano, Francesca ; Pierce, Andrew ; Copland, Mhairi ; Nourse, Craig ; Grimmond, Sean M. ; Vetrie, David ; Whetton, Anthony D. ; Holyoake, Tessa L.</creatorcontrib><description>Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR–ABL. Direct inhibition of BCR–ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR–ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show—using proteomics, transcriptomics and network analyses—that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR–ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated.
Leukaemic stem cells (LSCs) are responsible for BCR–ABL-driven chronic myeloid leukaemia relapse; here, p53 and MYC signalling networks are shown to regulate LSCs concurrently, and targeting both these pathways has a synergistic effect in managing the disease.
Dual targeting of p53 and c-Myc pathways
Tyrosine kinase inhibitors are a first-line therapy in patients with chronic myeloid leukaemia (CML), where they target the oncogenic
BCR-ABL
fusion gene. However, relapse inevitably occurs, probably driven by a drug-resistant population of leukaemic stem cells (LSCs). This study uncovers the concurrent involvement of p53 and Myc signalling networks in regulating LSCs. The authors demonstrate that genetic and/or pharmacological targeting of both the p53 and c-Myc pathways achieves more effective disease neutralization in mouse and human cell models of CML.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature18288</identifier><identifier>PMID: 27281222</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/31 ; 38 ; 38/91 ; 631/532/71 ; 631/67/1990/283/1896 ; 631/67/71 ; 64 ; 64/110 ; 64/60 ; 82 ; 82/58 ; Acetamides - pharmacology ; Acetamides - therapeutic use ; Animals ; Antigens, CD34 - metabolism ; Apoptosis ; Azepines - pharmacology ; Azepines - therapeutic use ; Cancer cells ; Cancer therapies ; Cell cycle ; Cell Death - drug effects ; Cell Differentiation - drug effects ; Chronic myeloid leukemia ; Development and progression ; DNA-Binding Proteins - metabolism ; Female ; Fusion Proteins, bcr-abl - metabolism ; Genetic aspects ; Health aspects ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - drug effects ; Hematopoietic Stem Cells - metabolism ; Humanities and Social Sciences ; Humans ; Imatinib Mesylate - pharmacology ; Imatinib Mesylate - therapeutic use ; Imidazolines - pharmacology ; Imidazolines - therapeutic use ; Kinases ; Leukemia ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology ; Male ; Methods ; Mice ; Molecular targeted therapy ; multidisciplinary ; Neoplasm Proteins - metabolism ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Neoplastic Stem Cells - transplantation ; Properties ; Proteins ; Proteomics ; Proto-Oncogene Proteins c-myc - antagonists & inhibitors ; Proto-Oncogene Proteins c-myc - deficiency ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; Reproducibility of Results ; Science ; Signal Transduction - drug effects ; Stem cells ; Transcription factors ; Transcriptome ; Tumor proteins ; Tumor Suppressor Protein p53 - antagonists & inhibitors ; Tumor Suppressor Protein p53 - deficiency ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Nature (London), 2016-06, Vol.534 (7607), p.341-346</ispartof><rights>Springer Nature Limited 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 16, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c714t-991b2df67f9f2a61ce90ac5934bffd40b48960fdbd0e841f68dc195e047c1e4c3</citedby><cites>FETCH-LOGICAL-c714t-991b2df67f9f2a61ce90ac5934bffd40b48960fdbd0e841f68dc195e047c1e4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature18288$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature18288$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27281222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abraham, Sheela A.</creatorcontrib><creatorcontrib>Hopcroft, Lisa E. M.</creatorcontrib><creatorcontrib>Carrick, Emma</creatorcontrib><creatorcontrib>Drotar, Mark E.</creatorcontrib><creatorcontrib>Dunn, Karen</creatorcontrib><creatorcontrib>Williamson, Andrew J. K.</creatorcontrib><creatorcontrib>Korfi, Koorosh</creatorcontrib><creatorcontrib>Baquero, Pablo</creatorcontrib><creatorcontrib>Park, Laura E.</creatorcontrib><creatorcontrib>Scott, Mary T.</creatorcontrib><creatorcontrib>Pellicano, Francesca</creatorcontrib><creatorcontrib>Pierce, Andrew</creatorcontrib><creatorcontrib>Copland, Mhairi</creatorcontrib><creatorcontrib>Nourse, Craig</creatorcontrib><creatorcontrib>Grimmond, Sean M.</creatorcontrib><creatorcontrib>Vetrie, David</creatorcontrib><creatorcontrib>Whetton, Anthony D.</creatorcontrib><creatorcontrib>Holyoake, Tessa L.</creatorcontrib><title>Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR–ABL. Direct inhibition of BCR–ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR–ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show—using proteomics, transcriptomics and network analyses—that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR–ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated.
Leukaemic stem cells (LSCs) are responsible for BCR–ABL-driven chronic myeloid leukaemia relapse; here, p53 and MYC signalling networks are shown to regulate LSCs concurrently, and targeting both these pathways has a synergistic effect in managing the disease.
Dual targeting of p53 and c-Myc pathways
Tyrosine kinase inhibitors are a first-line therapy in patients with chronic myeloid leukaemia (CML), where they target the oncogenic
BCR-ABL
fusion gene. However, relapse inevitably occurs, probably driven by a drug-resistant population of leukaemic stem cells (LSCs). This study uncovers the concurrent involvement of p53 and Myc signalling networks in regulating LSCs. The authors demonstrate that genetic and/or pharmacological targeting of both the p53 and c-Myc pathways achieves more effective disease neutralization in mouse and human cell models of CML.</description><subject>13</subject><subject>13/31</subject><subject>38</subject><subject>38/91</subject><subject>631/532/71</subject><subject>631/67/1990/283/1896</subject><subject>631/67/71</subject><subject>64</subject><subject>64/110</subject><subject>64/60</subject><subject>82</subject><subject>82/58</subject><subject>Acetamides - pharmacology</subject><subject>Acetamides - therapeutic use</subject><subject>Animals</subject><subject>Antigens, CD34 - metabolism</subject><subject>Apoptosis</subject><subject>Azepines - pharmacology</subject><subject>Azepines - therapeutic use</subject><subject>Cancer cells</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>Cell Death - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Chronic myeloid leukemia</subject><subject>Development and progression</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Female</subject><subject>Fusion Proteins, bcr-abl - metabolism</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Imatinib Mesylate - pharmacology</subject><subject>Imatinib Mesylate - therapeutic use</subject><subject>Imidazolines - pharmacology</subject><subject>Imidazolines - therapeutic use</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</subject><subject>Male</subject><subject>Methods</subject><subject>Mice</subject><subject>Molecular targeted therapy</subject><subject>multidisciplinary</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Neoplastic Stem Cells - transplantation</subject><subject>Properties</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Proto-Oncogene Proteins c-myc - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins c-myc - deficiency</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Signal Transduction - drug effects</subject><subject>Stem cells</subject><subject>Transcription factors</subject><subject>Transcriptome</subject><subject>Tumor proteins</subject><subject>Tumor Suppressor Protein p53 - antagonists & inhibitors</subject><subject>Tumor Suppressor Protein p53 - deficiency</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10t9v1SAUB_DGaNzd9Ml3Q_RFo51AaYEXk5s7fyxOTXTG-ES49FCZLb0rdHH_vdTNea-p5aFJ-fClcE6WPSD4kOBCvPA6jgMQQYW4lS0I41XOKsFvZwuMqcixKKq9bD-EM4xxSTi7m-1RTgWhlC6yd0ejblHUQwPR-Qb1Fm3KAmlfI5O__7ZCAVow0V1Ae4mgdZ1L20FALYw_NHTOoBChQwbaNtzL7ljdBrh__T7Ivrx-dbp6m598fHO8Wp7khhMWcynJmta24lZaqitiQGJtSlmwtbU1w2smZIVtva4xCEZsJWpDZAmYcUOAmeIge3mVuxnXHdQGfBx0qzaD6_RwqXrt1O6Md99V018oJkkheJUCnlwHDP35CCGqzoXpCNpDPwZFuOSCF-lGE338Dz3rx8Gn4_1WlWTp-asa3YJy3vZpXzOFqiUry4oUlE9Z-YxqwEP6yd6Ddenzjn80483GnattdDiD0qin6symPt1ZkEyEn7HRYwjq-POnXfvs_3Z5-nX1YVaboQ9hAHtTEoLV1Kpqq1WTfrhdxRv7pzcTeH4FQpryDQxbVz-T9wuIJe-m</recordid><startdate>20160616</startdate><enddate>20160616</enddate><creator>Abraham, Sheela A.</creator><creator>Hopcroft, Lisa E. M.</creator><creator>Carrick, Emma</creator><creator>Drotar, Mark E.</creator><creator>Dunn, Karen</creator><creator>Williamson, Andrew J. K.</creator><creator>Korfi, Koorosh</creator><creator>Baquero, Pablo</creator><creator>Park, Laura E.</creator><creator>Scott, Mary T.</creator><creator>Pellicano, Francesca</creator><creator>Pierce, Andrew</creator><creator>Copland, Mhairi</creator><creator>Nourse, Craig</creator><creator>Grimmond, Sean M.</creator><creator>Vetrie, David</creator><creator>Whetton, Anthony D.</creator><creator>Holyoake, Tessa L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160616</creationdate><title>Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells</title><author>Abraham, Sheela A. ; Hopcroft, Lisa E. M. ; Carrick, Emma ; Drotar, Mark E. ; Dunn, Karen ; Williamson, Andrew J. K. ; Korfi, Koorosh ; Baquero, Pablo ; Park, Laura E. ; Scott, Mary T. ; Pellicano, Francesca ; Pierce, Andrew ; Copland, Mhairi ; Nourse, Craig ; Grimmond, Sean M. ; Vetrie, David ; Whetton, Anthony D. ; Holyoake, Tessa L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c714t-991b2df67f9f2a61ce90ac5934bffd40b48960fdbd0e841f68dc195e047c1e4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13</topic><topic>13/31</topic><topic>38</topic><topic>38/91</topic><topic>631/532/71</topic><topic>631/67/1990/283/1896</topic><topic>631/67/71</topic><topic>64</topic><topic>64/110</topic><topic>64/60</topic><topic>82</topic><topic>82/58</topic><topic>Acetamides - pharmacology</topic><topic>Acetamides - therapeutic use</topic><topic>Animals</topic><topic>Antigens, CD34 - metabolism</topic><topic>Apoptosis</topic><topic>Azepines - pharmacology</topic><topic>Azepines - therapeutic use</topic><topic>Cancer cells</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>Cell Death - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Chronic myeloid leukemia</topic><topic>Development and progression</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Female</topic><topic>Fusion Proteins, bcr-abl - metabolism</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Imatinib Mesylate - pharmacology</topic><topic>Imatinib Mesylate - therapeutic use</topic><topic>Imidazolines - pharmacology</topic><topic>Imidazolines - therapeutic use</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</topic><topic>Male</topic><topic>Methods</topic><topic>Mice</topic><topic>Molecular targeted therapy</topic><topic>multidisciplinary</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Neoplastic Stem Cells - transplantation</topic><topic>Properties</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Proto-Oncogene Proteins c-myc - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins c-myc - deficiency</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Signal Transduction - drug effects</topic><topic>Stem cells</topic><topic>Transcription factors</topic><topic>Transcriptome</topic><topic>Tumor proteins</topic><topic>Tumor Suppressor Protein p53 - antagonists & inhibitors</topic><topic>Tumor Suppressor Protein p53 - deficiency</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Sheela A.</creatorcontrib><creatorcontrib>Hopcroft, Lisa E. M.</creatorcontrib><creatorcontrib>Carrick, Emma</creatorcontrib><creatorcontrib>Drotar, Mark E.</creatorcontrib><creatorcontrib>Dunn, Karen</creatorcontrib><creatorcontrib>Williamson, Andrew J. K.</creatorcontrib><creatorcontrib>Korfi, Koorosh</creatorcontrib><creatorcontrib>Baquero, Pablo</creatorcontrib><creatorcontrib>Park, Laura E.</creatorcontrib><creatorcontrib>Scott, Mary T.</creatorcontrib><creatorcontrib>Pellicano, Francesca</creatorcontrib><creatorcontrib>Pierce, Andrew</creatorcontrib><creatorcontrib>Copland, Mhairi</creatorcontrib><creatorcontrib>Nourse, Craig</creatorcontrib><creatorcontrib>Grimmond, Sean M.</creatorcontrib><creatorcontrib>Vetrie, David</creatorcontrib><creatorcontrib>Whetton, Anthony D.</creatorcontrib><creatorcontrib>Holyoake, Tessa L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Sheela A.</au><au>Hopcroft, Lisa E. M.</au><au>Carrick, Emma</au><au>Drotar, Mark E.</au><au>Dunn, Karen</au><au>Williamson, Andrew J. K.</au><au>Korfi, Koorosh</au><au>Baquero, Pablo</au><au>Park, Laura E.</au><au>Scott, Mary T.</au><au>Pellicano, Francesca</au><au>Pierce, Andrew</au><au>Copland, Mhairi</au><au>Nourse, Craig</au><au>Grimmond, Sean M.</au><au>Vetrie, David</au><au>Whetton, Anthony D.</au><au>Holyoake, Tessa L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2016-06-16</date><risdate>2016</risdate><volume>534</volume><issue>7607</issue><spage>341</spage><epage>346</epage><pages>341-346</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR–ABL. Direct inhibition of BCR–ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR–ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show—using proteomics, transcriptomics and network analyses—that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR–ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated.
Leukaemic stem cells (LSCs) are responsible for BCR–ABL-driven chronic myeloid leukaemia relapse; here, p53 and MYC signalling networks are shown to regulate LSCs concurrently, and targeting both these pathways has a synergistic effect in managing the disease.
Dual targeting of p53 and c-Myc pathways
Tyrosine kinase inhibitors are a first-line therapy in patients with chronic myeloid leukaemia (CML), where they target the oncogenic
BCR-ABL
fusion gene. However, relapse inevitably occurs, probably driven by a drug-resistant population of leukaemic stem cells (LSCs). This study uncovers the concurrent involvement of p53 and Myc signalling networks in regulating LSCs. The authors demonstrate that genetic and/or pharmacological targeting of both the p53 and c-Myc pathways achieves more effective disease neutralization in mouse and human cell models of CML.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27281222</pmid><doi>10.1038/nature18288</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2016-06, Vol.534 (7607), p.341-346 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4913876 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 13 13/31 38 38/91 631/532/71 631/67/1990/283/1896 631/67/71 64 64/110 64/60 82 82/58 Acetamides - pharmacology Acetamides - therapeutic use Animals Antigens, CD34 - metabolism Apoptosis Azepines - pharmacology Azepines - therapeutic use Cancer cells Cancer therapies Cell cycle Cell Death - drug effects Cell Differentiation - drug effects Chronic myeloid leukemia Development and progression DNA-Binding Proteins - metabolism Female Fusion Proteins, bcr-abl - metabolism Genetic aspects Health aspects Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - drug effects Hematopoietic Stem Cells - metabolism Humanities and Social Sciences Humans Imatinib Mesylate - pharmacology Imatinib Mesylate - therapeutic use Imidazolines - pharmacology Imidazolines - therapeutic use Kinases Leukemia Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology Male Methods Mice Molecular targeted therapy multidisciplinary Neoplasm Proteins - metabolism Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Neoplastic Stem Cells - transplantation Properties Proteins Proteomics Proto-Oncogene Proteins c-myc - antagonists & inhibitors Proto-Oncogene Proteins c-myc - deficiency Proto-Oncogene Proteins c-myc - genetics Proto-Oncogene Proteins c-myc - metabolism Reproducibility of Results Science Signal Transduction - drug effects Stem cells Transcription factors Transcriptome Tumor proteins Tumor Suppressor Protein p53 - antagonists & inhibitors Tumor Suppressor Protein p53 - deficiency Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism |
title | Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20targeting%20of%20p53%20and%20c-MYC%20selectively%20eliminates%20leukaemic%20stem%20cells&rft.jtitle=Nature%20(London)&rft.au=Abraham,%20Sheela%20A.&rft.date=2016-06-16&rft.volume=534&rft.issue=7607&rft.spage=341&rft.epage=346&rft.pages=341-346&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature18288&rft_dat=%3Cgale_pubme%3EA455613278%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797694444&rft_id=info:pmid/27281222&rft_galeid=A455613278&rfr_iscdi=true |