Vertebral Implantation of NELL-1 Enhances Bone Formation in an Osteoporotic Sheep Model
Background: Vertebral compression fractures related to osteoporosis greatly afflict the aging population. One of the most commonly used therapy today is balloon kyphoplasty. However, this treatment is far from ideal and is associated with significant side effects. NELL-1, an osteoinductive factor th...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2016-06, Vol.22 (11-12), p.84-849 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 849 |
---|---|
container_issue | 11-12 |
container_start_page | 84 |
container_title | Tissue engineering. Part A |
container_volume | 22 |
creator | James, Aaron W. Chiang, Michael Asatrian, Greg Shen, Jia Goyal, Raghav Chung, Choon G. Chang, Le Shrestha, Swati Turner, A. Simon Seim, Howard B. Zhang, Xinli Wu, Benjamin M. Ting, Kang Soo, Chia |
description | Background:
Vertebral compression fractures related to osteoporosis greatly afflict the aging population. One of the most commonly used therapy today is balloon kyphoplasty. However, this treatment is far from ideal and is associated with significant side effects. NELL-1, an osteoinductive factor that possesses both pro-osteogenic and anti-osteoclastic properties, is a promising candidate for an alternative to current treatment modalities. This study utilizes the pro-osteogenic properties of recombinant human NELL-1 (rhNELL-1) in lumbar spine vertebral defect model in osteoporotic sheep.
Methods:
Osteoporosis was induced through ovariectomy, dietary depletion of calcium and vitamin D, and steroid administration. After osteoporotic induction, lumbar vertebral body defect creation was performed. Sheep were randomly implanted with the control vehicle, comprised of hyaluronic acid (HA) with hydroxyapatite-coated β-tricalcium phosphate (β-TCP), or the treatment material of rhNELL-1 protein lyophilized onto β-TCP mixed with HA. Analysis of lumbar spine defect healing was performed by radiographic, histologic, and computer-simulated biomechanical testing.
Results:
rhNELL-1 treatment significantly increased lumbar spine bone formation, as determined by bone mineral density, % bone volume, and mean cortical width as assessed by micro-computed tomography. Histological analysis revealed a significant increase in bone area and osteoblast number and decrease in osteoclast number around the implant site. Computer-simulated biomechanical analysis of trabecular bone demonstrated that rhNELL-1-treatment resulted in a significantly more stress-resistant composition.
Conclusion:
Our findings suggest rhNELL-1-based vertebral implantation successfully improved cortical and cancellous bone regeneration in the lumbar spine of osteoporotic sheep. rhNELL-1-based bone graft substitutes represent a potential new local therapy. |
doi_str_mv | 10.1089/ten.tea.2015.0230 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4913506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4125594241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-412d34322890c3ec68441e3a893bf57feab42ed8c6c478440be92973ec478d723</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EoqXwA9ggS2zYZPAzdjZIUE0f0rRd8NxZjnPDpErsYHuQ-Pd1NGUEbOjC8uN-98j3HIReUrKiRDdvM_hVBrtihMoVYZw8Qse04ariXH57fDgLeoSepXRLSE1qpZ6iI6Yo5VKSY_T1C8QMbbQjvpzm0fps8xA8Dj2-Xm82FcVrv7XeQcIfggd8FuK0JwaPrcc3KUOYQwx5cPjjFmDGV6GD8Tl60tsxwYv7_QR9Plt_Or2oNjfnl6fvN5WTss6VoKzjgjOmG-I4uFoLQYFb3fC2l6oH2woGnXa1E6rUSAsNa1Qhy7VTjJ-gd3vdeddO0Dnwucxi5jhMNv4ywQ7m74oftuZ7-GlEUxwgdRF4cy8Qw48dpGymITkYixUQdslQTXQxTQv6f1Q1UitJCC_o63_Q27CLvjixCNaUCiFJoeiecjGkFKE__JsSsyRsSsJlWbMkbJaES8-rPwc-dPyOtABqDyzP1vtxgLZk_ADpO8aBtLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806114450</pqid></control><display><type>article</type><title>Vertebral Implantation of NELL-1 Enhances Bone Formation in an Osteoporotic Sheep Model</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>James, Aaron W. ; Chiang, Michael ; Asatrian, Greg ; Shen, Jia ; Goyal, Raghav ; Chung, Choon G. ; Chang, Le ; Shrestha, Swati ; Turner, A. Simon ; Seim, Howard B. ; Zhang, Xinli ; Wu, Benjamin M. ; Ting, Kang ; Soo, Chia</creator><creatorcontrib>James, Aaron W. ; Chiang, Michael ; Asatrian, Greg ; Shen, Jia ; Goyal, Raghav ; Chung, Choon G. ; Chang, Le ; Shrestha, Swati ; Turner, A. Simon ; Seim, Howard B. ; Zhang, Xinli ; Wu, Benjamin M. ; Ting, Kang ; Soo, Chia</creatorcontrib><description>Background:
Vertebral compression fractures related to osteoporosis greatly afflict the aging population. One of the most commonly used therapy today is balloon kyphoplasty. However, this treatment is far from ideal and is associated with significant side effects. NELL-1, an osteoinductive factor that possesses both pro-osteogenic and anti-osteoclastic properties, is a promising candidate for an alternative to current treatment modalities. This study utilizes the pro-osteogenic properties of recombinant human NELL-1 (rhNELL-1) in lumbar spine vertebral defect model in osteoporotic sheep.
Methods:
Osteoporosis was induced through ovariectomy, dietary depletion of calcium and vitamin D, and steroid administration. After osteoporotic induction, lumbar vertebral body defect creation was performed. Sheep were randomly implanted with the control vehicle, comprised of hyaluronic acid (HA) with hydroxyapatite-coated β-tricalcium phosphate (β-TCP), or the treatment material of rhNELL-1 protein lyophilized onto β-TCP mixed with HA. Analysis of lumbar spine defect healing was performed by radiographic, histologic, and computer-simulated biomechanical testing.
Results:
rhNELL-1 treatment significantly increased lumbar spine bone formation, as determined by bone mineral density, % bone volume, and mean cortical width as assessed by micro-computed tomography. Histological analysis revealed a significant increase in bone area and osteoblast number and decrease in osteoclast number around the implant site. Computer-simulated biomechanical analysis of trabecular bone demonstrated that rhNELL-1-treatment resulted in a significantly more stress-resistant composition.
Conclusion:
Our findings suggest rhNELL-1-based vertebral implantation successfully improved cortical and cancellous bone regeneration in the lumbar spine of osteoporotic sheep. rhNELL-1-based bone graft substitutes represent a potential new local therapy.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2015.0230</identifier><identifier>PMID: 27113550</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Absorptiometry, Photon ; Animals ; Biomechanical Phenomena ; Bone Density - drug effects ; Bones ; Cell Count ; Disease Models, Animal ; Finite Element Analysis ; Growth factors ; Humans ; Implants, Experimental ; Lumbar Vertebrae - diagnostic imaging ; Lumbar Vertebrae - drug effects ; Lumbar Vertebrae - pathology ; Lumbar Vertebrae - physiopathology ; Nerve Tissue Proteins - pharmacology ; Original ; Original Articles ; Osteoblasts - drug effects ; Osteoblasts - pathology ; Osteoclasts - drug effects ; Osteoclasts - pathology ; Osteogenesis - drug effects ; Osteoporosis ; Osteoporosis - diagnostic imaging ; Osteoporosis - pathology ; Osteoporosis - physiopathology ; Osteoporosis - therapy ; Pneumoviridae ; Sheep ; Tissue engineering ; Vertebrae ; X-Ray Microtomography</subject><ispartof>Tissue engineering. Part A, 2016-06, Vol.22 (11-12), p.84-849</ispartof><rights>2016, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2016, Mary Ann Liebert, Inc.</rights><rights>Copyright 2016, Mary Ann Liebert, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-412d34322890c3ec68441e3a893bf57feab42ed8c6c478440be92973ec478d723</citedby><cites>FETCH-LOGICAL-c556t-412d34322890c3ec68441e3a893bf57feab42ed8c6c478440be92973ec478d723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27113550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>James, Aaron W.</creatorcontrib><creatorcontrib>Chiang, Michael</creatorcontrib><creatorcontrib>Asatrian, Greg</creatorcontrib><creatorcontrib>Shen, Jia</creatorcontrib><creatorcontrib>Goyal, Raghav</creatorcontrib><creatorcontrib>Chung, Choon G.</creatorcontrib><creatorcontrib>Chang, Le</creatorcontrib><creatorcontrib>Shrestha, Swati</creatorcontrib><creatorcontrib>Turner, A. Simon</creatorcontrib><creatorcontrib>Seim, Howard B.</creatorcontrib><creatorcontrib>Zhang, Xinli</creatorcontrib><creatorcontrib>Wu, Benjamin M.</creatorcontrib><creatorcontrib>Ting, Kang</creatorcontrib><creatorcontrib>Soo, Chia</creatorcontrib><title>Vertebral Implantation of NELL-1 Enhances Bone Formation in an Osteoporotic Sheep Model</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Background:
Vertebral compression fractures related to osteoporosis greatly afflict the aging population. One of the most commonly used therapy today is balloon kyphoplasty. However, this treatment is far from ideal and is associated with significant side effects. NELL-1, an osteoinductive factor that possesses both pro-osteogenic and anti-osteoclastic properties, is a promising candidate for an alternative to current treatment modalities. This study utilizes the pro-osteogenic properties of recombinant human NELL-1 (rhNELL-1) in lumbar spine vertebral defect model in osteoporotic sheep.
Methods:
Osteoporosis was induced through ovariectomy, dietary depletion of calcium and vitamin D, and steroid administration. After osteoporotic induction, lumbar vertebral body defect creation was performed. Sheep were randomly implanted with the control vehicle, comprised of hyaluronic acid (HA) with hydroxyapatite-coated β-tricalcium phosphate (β-TCP), or the treatment material of rhNELL-1 protein lyophilized onto β-TCP mixed with HA. Analysis of lumbar spine defect healing was performed by radiographic, histologic, and computer-simulated biomechanical testing.
Results:
rhNELL-1 treatment significantly increased lumbar spine bone formation, as determined by bone mineral density, % bone volume, and mean cortical width as assessed by micro-computed tomography. Histological analysis revealed a significant increase in bone area and osteoblast number and decrease in osteoclast number around the implant site. Computer-simulated biomechanical analysis of trabecular bone demonstrated that rhNELL-1-treatment resulted in a significantly more stress-resistant composition.
Conclusion:
Our findings suggest rhNELL-1-based vertebral implantation successfully improved cortical and cancellous bone regeneration in the lumbar spine of osteoporotic sheep. rhNELL-1-based bone graft substitutes represent a potential new local therapy.</description><subject>Absorptiometry, Photon</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Bone Density - drug effects</subject><subject>Bones</subject><subject>Cell Count</subject><subject>Disease Models, Animal</subject><subject>Finite Element Analysis</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Implants, Experimental</subject><subject>Lumbar Vertebrae - diagnostic imaging</subject><subject>Lumbar Vertebrae - drug effects</subject><subject>Lumbar Vertebrae - pathology</subject><subject>Lumbar Vertebrae - physiopathology</subject><subject>Nerve Tissue Proteins - pharmacology</subject><subject>Original</subject><subject>Original Articles</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - pathology</subject><subject>Osteoclasts - drug effects</subject><subject>Osteoclasts - pathology</subject><subject>Osteogenesis - drug effects</subject><subject>Osteoporosis</subject><subject>Osteoporosis - diagnostic imaging</subject><subject>Osteoporosis - pathology</subject><subject>Osteoporosis - physiopathology</subject><subject>Osteoporosis - therapy</subject><subject>Pneumoviridae</subject><subject>Sheep</subject><subject>Tissue engineering</subject><subject>Vertebrae</subject><subject>X-Ray Microtomography</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtv1DAUhS0EoqXwA9ggS2zYZPAzdjZIUE0f0rRd8NxZjnPDpErsYHuQ-Pd1NGUEbOjC8uN-98j3HIReUrKiRDdvM_hVBrtihMoVYZw8Qse04ariXH57fDgLeoSepXRLSE1qpZ6iI6Yo5VKSY_T1C8QMbbQjvpzm0fps8xA8Dj2-Xm82FcVrv7XeQcIfggd8FuK0JwaPrcc3KUOYQwx5cPjjFmDGV6GD8Tl60tsxwYv7_QR9Plt_Or2oNjfnl6fvN5WTss6VoKzjgjOmG-I4uFoLQYFb3fC2l6oH2woGnXa1E6rUSAsNa1Qhy7VTjJ-gd3vdeddO0Dnwucxi5jhMNv4ywQ7m74oftuZ7-GlEUxwgdRF4cy8Qw48dpGymITkYixUQdslQTXQxTQv6f1Q1UitJCC_o63_Q27CLvjixCNaUCiFJoeiecjGkFKE__JsSsyRsSsJlWbMkbJaES8-rPwc-dPyOtABqDyzP1vtxgLZk_ADpO8aBtLk</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>James, Aaron W.</creator><creator>Chiang, Michael</creator><creator>Asatrian, Greg</creator><creator>Shen, Jia</creator><creator>Goyal, Raghav</creator><creator>Chung, Choon G.</creator><creator>Chang, Le</creator><creator>Shrestha, Swati</creator><creator>Turner, A. Simon</creator><creator>Seim, Howard B.</creator><creator>Zhang, Xinli</creator><creator>Wu, Benjamin M.</creator><creator>Ting, Kang</creator><creator>Soo, Chia</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20160601</creationdate><title>Vertebral Implantation of NELL-1 Enhances Bone Formation in an Osteoporotic Sheep Model</title><author>James, Aaron W. ; Chiang, Michael ; Asatrian, Greg ; Shen, Jia ; Goyal, Raghav ; Chung, Choon G. ; Chang, Le ; Shrestha, Swati ; Turner, A. Simon ; Seim, Howard B. ; Zhang, Xinli ; Wu, Benjamin M. ; Ting, Kang ; Soo, Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-412d34322890c3ec68441e3a893bf57feab42ed8c6c478440be92973ec478d723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Absorptiometry, Photon</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Bone Density - drug effects</topic><topic>Bones</topic><topic>Cell Count</topic><topic>Disease Models, Animal</topic><topic>Finite Element Analysis</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Implants, Experimental</topic><topic>Lumbar Vertebrae - diagnostic imaging</topic><topic>Lumbar Vertebrae - drug effects</topic><topic>Lumbar Vertebrae - pathology</topic><topic>Lumbar Vertebrae - physiopathology</topic><topic>Nerve Tissue Proteins - pharmacology</topic><topic>Original</topic><topic>Original Articles</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - pathology</topic><topic>Osteoclasts - drug effects</topic><topic>Osteoclasts - pathology</topic><topic>Osteogenesis - drug effects</topic><topic>Osteoporosis</topic><topic>Osteoporosis - diagnostic imaging</topic><topic>Osteoporosis - pathology</topic><topic>Osteoporosis - physiopathology</topic><topic>Osteoporosis - therapy</topic><topic>Pneumoviridae</topic><topic>Sheep</topic><topic>Tissue engineering</topic><topic>Vertebrae</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James, Aaron W.</creatorcontrib><creatorcontrib>Chiang, Michael</creatorcontrib><creatorcontrib>Asatrian, Greg</creatorcontrib><creatorcontrib>Shen, Jia</creatorcontrib><creatorcontrib>Goyal, Raghav</creatorcontrib><creatorcontrib>Chung, Choon G.</creatorcontrib><creatorcontrib>Chang, Le</creatorcontrib><creatorcontrib>Shrestha, Swati</creatorcontrib><creatorcontrib>Turner, A. Simon</creatorcontrib><creatorcontrib>Seim, Howard B.</creatorcontrib><creatorcontrib>Zhang, Xinli</creatorcontrib><creatorcontrib>Wu, Benjamin M.</creatorcontrib><creatorcontrib>Ting, Kang</creatorcontrib><creatorcontrib>Soo, Chia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>James, Aaron W.</au><au>Chiang, Michael</au><au>Asatrian, Greg</au><au>Shen, Jia</au><au>Goyal, Raghav</au><au>Chung, Choon G.</au><au>Chang, Le</au><au>Shrestha, Swati</au><au>Turner, A. Simon</au><au>Seim, Howard B.</au><au>Zhang, Xinli</au><au>Wu, Benjamin M.</au><au>Ting, Kang</au><au>Soo, Chia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertebral Implantation of NELL-1 Enhances Bone Formation in an Osteoporotic Sheep Model</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>22</volume><issue>11-12</issue><spage>84</spage><epage>849</epage><pages>84-849</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Background:
Vertebral compression fractures related to osteoporosis greatly afflict the aging population. One of the most commonly used therapy today is balloon kyphoplasty. However, this treatment is far from ideal and is associated with significant side effects. NELL-1, an osteoinductive factor that possesses both pro-osteogenic and anti-osteoclastic properties, is a promising candidate for an alternative to current treatment modalities. This study utilizes the pro-osteogenic properties of recombinant human NELL-1 (rhNELL-1) in lumbar spine vertebral defect model in osteoporotic sheep.
Methods:
Osteoporosis was induced through ovariectomy, dietary depletion of calcium and vitamin D, and steroid administration. After osteoporotic induction, lumbar vertebral body defect creation was performed. Sheep were randomly implanted with the control vehicle, comprised of hyaluronic acid (HA) with hydroxyapatite-coated β-tricalcium phosphate (β-TCP), or the treatment material of rhNELL-1 protein lyophilized onto β-TCP mixed with HA. Analysis of lumbar spine defect healing was performed by radiographic, histologic, and computer-simulated biomechanical testing.
Results:
rhNELL-1 treatment significantly increased lumbar spine bone formation, as determined by bone mineral density, % bone volume, and mean cortical width as assessed by micro-computed tomography. Histological analysis revealed a significant increase in bone area and osteoblast number and decrease in osteoclast number around the implant site. Computer-simulated biomechanical analysis of trabecular bone demonstrated that rhNELL-1-treatment resulted in a significantly more stress-resistant composition.
Conclusion:
Our findings suggest rhNELL-1-based vertebral implantation successfully improved cortical and cancellous bone regeneration in the lumbar spine of osteoporotic sheep. rhNELL-1-based bone graft substitutes represent a potential new local therapy.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>27113550</pmid><doi>10.1089/ten.tea.2015.0230</doi><tpages>766</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2016-06, Vol.22 (11-12), p.84-849 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4913506 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Absorptiometry, Photon Animals Biomechanical Phenomena Bone Density - drug effects Bones Cell Count Disease Models, Animal Finite Element Analysis Growth factors Humans Implants, Experimental Lumbar Vertebrae - diagnostic imaging Lumbar Vertebrae - drug effects Lumbar Vertebrae - pathology Lumbar Vertebrae - physiopathology Nerve Tissue Proteins - pharmacology Original Original Articles Osteoblasts - drug effects Osteoblasts - pathology Osteoclasts - drug effects Osteoclasts - pathology Osteogenesis - drug effects Osteoporosis Osteoporosis - diagnostic imaging Osteoporosis - pathology Osteoporosis - physiopathology Osteoporosis - therapy Pneumoviridae Sheep Tissue engineering Vertebrae X-Ray Microtomography |
title | Vertebral Implantation of NELL-1 Enhances Bone Formation in an Osteoporotic Sheep Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertebral%20Implantation%20of%20NELL-1%20Enhances%20Bone%20Formation%20in%20an%20Osteoporotic%20Sheep%20Model&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=James,%20Aaron%20W.&rft.date=2016-06-01&rft.volume=22&rft.issue=11-12&rft.spage=84&rft.epage=849&rft.pages=84-849&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2015.0230&rft_dat=%3Cproquest_pubme%3E4125594241%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806114450&rft_id=info:pmid/27113550&rfr_iscdi=true |