Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning
We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2016-01, Vol.2016 (2016), p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2016 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2016 |
creator | Barbosa-Santillán, Luis F. Calixto-Romo, M. Angeles Sánchez-Escobar, Juan J. Barbosa-Santillán, Liliana Ibeth |
description | We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. |
doi_str_mv | 10.1155/2016/1505261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4913023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1801424781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-6c4acc858cf7e30c6398d09371dfb067a83f61d4e46179008c59fb36cf6d7ee3</originalsourceid><addsrcrecordid>eNqNkM1P4zAQxa3VouXztudVjitBYSZObOeCVBBfUhFI9MDNcuwxeJUmXTsF8d8T1FLgxmlG83568_QY-41wiFiWRzmgOMISylzgD7aFslAjIVH9XO9wv8m2U_oHUKIs8RfbzCUXIod8i02m3bOJLmVXjto--JfsjhqyfXiibDwcamN7isE02S3N--AoZScmkcu6NhvXqY-DnrJrMm1oH3bZhjdNor3V3GHT87Pp6eVocnNxdTqejGwB0I-ELYy1qlTWS-JgBa-Ug4pLdL4GIY3iXqArqBAoKwBly8rXXFgvnCTiO-x4aTtf1DNydggeTaPnMcxMfNGdCfqr0oZH_dA96aJCDjkfDP6uDGL3f0Gp17OQLDWNaalbJI0KsMgLqXBAD5aojV1Kkfz6DYJ-61-_9a9X_Q_4n8_R1vB74QOwvwQeQ-vMc_imHQ0MefNBIwAIzl8B97iX9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801424781</pqid></control><display><type>article</type><title>Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Barbosa-Santillán, Luis F. ; Calixto-Romo, M. Angeles ; Sánchez-Escobar, Juan J. ; Barbosa-Santillán, Liliana Ibeth</creator><contributor>Alexov, Emil</contributor><creatorcontrib>Barbosa-Santillán, Luis F. ; Calixto-Romo, M. Angeles ; Sánchez-Escobar, Juan J. ; Barbosa-Santillán, Liliana Ibeth ; Alexov, Emil</creatorcontrib><description>We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2016/1505261</identifier><identifier>PMID: 27366202</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Antimicrobial Cationic Peptides - chemistry ; Bacterial Infections - drug therapy ; Computational Biology - methods ; Databases, Protein ; Drug Design ; Humans ; Language ; Models, Statistical ; Natural Language Processing ; Peptides - chemistry ; PubMed ; Reproducibility of Results ; Semantics ; Software</subject><ispartof>Computational and mathematical methods in medicine, 2016-01, Vol.2016 (2016), p.1-11</ispartof><rights>Copyright © 2016 Liliana I. Barbosa-Santillán et al.</rights><rights>Copyright © 2016 Liliana I. Barbosa-Santillán et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-6c4acc858cf7e30c6398d09371dfb067a83f61d4e46179008c59fb36cf6d7ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913023/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913023/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27366202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alexov, Emil</contributor><creatorcontrib>Barbosa-Santillán, Luis F.</creatorcontrib><creatorcontrib>Calixto-Romo, M. Angeles</creatorcontrib><creatorcontrib>Sánchez-Escobar, Juan J.</creatorcontrib><creatorcontrib>Barbosa-Santillán, Liliana Ibeth</creatorcontrib><title>Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2.</description><subject>Algorithms</subject><subject>Antimicrobial Cationic Peptides - chemistry</subject><subject>Bacterial Infections - drug therapy</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Language</subject><subject>Models, Statistical</subject><subject>Natural Language Processing</subject><subject>Peptides - chemistry</subject><subject>PubMed</subject><subject>Reproducibility of Results</subject><subject>Semantics</subject><subject>Software</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkM1P4zAQxa3VouXztudVjitBYSZObOeCVBBfUhFI9MDNcuwxeJUmXTsF8d8T1FLgxmlG83568_QY-41wiFiWRzmgOMISylzgD7aFslAjIVH9XO9wv8m2U_oHUKIs8RfbzCUXIod8i02m3bOJLmVXjto--JfsjhqyfXiibDwcamN7isE02S3N--AoZScmkcu6NhvXqY-DnrJrMm1oH3bZhjdNor3V3GHT87Pp6eVocnNxdTqejGwB0I-ELYy1qlTWS-JgBa-Ug4pLdL4GIY3iXqArqBAoKwBly8rXXFgvnCTiO-x4aTtf1DNydggeTaPnMcxMfNGdCfqr0oZH_dA96aJCDjkfDP6uDGL3f0Gp17OQLDWNaalbJI0KsMgLqXBAD5aojV1Kkfz6DYJ-61-_9a9X_Q_4n8_R1vB74QOwvwQeQ-vMc_imHQ0MefNBIwAIzl8B97iX9g</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Barbosa-Santillán, Luis F.</creator><creator>Calixto-Romo, M. Angeles</creator><creator>Sánchez-Escobar, Juan J.</creator><creator>Barbosa-Santillán, Liliana Ibeth</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning</title><author>Barbosa-Santillán, Luis F. ; Calixto-Romo, M. Angeles ; Sánchez-Escobar, Juan J. ; Barbosa-Santillán, Liliana Ibeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-6c4acc858cf7e30c6398d09371dfb067a83f61d4e46179008c59fb36cf6d7ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Antimicrobial Cationic Peptides - chemistry</topic><topic>Bacterial Infections - drug therapy</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Language</topic><topic>Models, Statistical</topic><topic>Natural Language Processing</topic><topic>Peptides - chemistry</topic><topic>PubMed</topic><topic>Reproducibility of Results</topic><topic>Semantics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa-Santillán, Luis F.</creatorcontrib><creatorcontrib>Calixto-Romo, M. Angeles</creatorcontrib><creatorcontrib>Sánchez-Escobar, Juan J.</creatorcontrib><creatorcontrib>Barbosa-Santillán, Liliana Ibeth</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa-Santillán, Luis F.</au><au>Calixto-Romo, M. Angeles</au><au>Sánchez-Escobar, Juan J.</au><au>Barbosa-Santillán, Liliana Ibeth</au><au>Alexov, Emil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27366202</pmid><doi>10.1155/2016/1505261</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2016-01, Vol.2016 (2016), p.1-11 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4913023 |
source | MEDLINE; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Algorithms Antimicrobial Cationic Peptides - chemistry Bacterial Infections - drug therapy Computational Biology - methods Databases, Protein Drug Design Humans Language Models, Statistical Natural Language Processing Peptides - chemistry PubMed Reproducibility of Results Semantics Software |
title | Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Identify%20Selective%20Antibacterial%20Peptides%20Based%20on%20Abstracts%20Meaning&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Barbosa-Santill%C3%A1n,%20Luis%20F.&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2016/1505261&rft_dat=%3Cproquest_pubme%3E1801424781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801424781&rft_id=info:pmid/27366202&rfr_iscdi=true |