Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning

We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2016-01, Vol.2016 (2016), p.1-11
Hauptverfasser: Barbosa-Santillán, Luis F., Calixto-Romo, M. Angeles, Sánchez-Escobar, Juan J., Barbosa-Santillán, Liliana Ibeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2016
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2016
creator Barbosa-Santillán, Luis F.
Calixto-Romo, M. Angeles
Sánchez-Escobar, Juan J.
Barbosa-Santillán, Liliana Ibeth
description We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2.
doi_str_mv 10.1155/2016/1505261
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4913023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1801424781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-6c4acc858cf7e30c6398d09371dfb067a83f61d4e46179008c59fb36cf6d7ee3</originalsourceid><addsrcrecordid>eNqNkM1P4zAQxa3VouXztudVjitBYSZObOeCVBBfUhFI9MDNcuwxeJUmXTsF8d8T1FLgxmlG83568_QY-41wiFiWRzmgOMISylzgD7aFslAjIVH9XO9wv8m2U_oHUKIs8RfbzCUXIod8i02m3bOJLmVXjto--JfsjhqyfXiibDwcamN7isE02S3N--AoZScmkcu6NhvXqY-DnrJrMm1oH3bZhjdNor3V3GHT87Pp6eVocnNxdTqejGwB0I-ELYy1qlTWS-JgBa-Ug4pLdL4GIY3iXqArqBAoKwBly8rXXFgvnCTiO-x4aTtf1DNydggeTaPnMcxMfNGdCfqr0oZH_dA96aJCDjkfDP6uDGL3f0Gp17OQLDWNaalbJI0KsMgLqXBAD5aojV1Kkfz6DYJ-61-_9a9X_Q_4n8_R1vB74QOwvwQeQ-vMc_imHQ0MefNBIwAIzl8B97iX9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801424781</pqid></control><display><type>article</type><title>Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Barbosa-Santillán, Luis F. ; Calixto-Romo, M. Angeles ; Sánchez-Escobar, Juan J. ; Barbosa-Santillán, Liliana Ibeth</creator><contributor>Alexov, Emil</contributor><creatorcontrib>Barbosa-Santillán, Luis F. ; Calixto-Romo, M. Angeles ; Sánchez-Escobar, Juan J. ; Barbosa-Santillán, Liliana Ibeth ; Alexov, Emil</creatorcontrib><description>We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2016/1505261</identifier><identifier>PMID: 27366202</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Antimicrobial Cationic Peptides - chemistry ; Bacterial Infections - drug therapy ; Computational Biology - methods ; Databases, Protein ; Drug Design ; Humans ; Language ; Models, Statistical ; Natural Language Processing ; Peptides - chemistry ; PubMed ; Reproducibility of Results ; Semantics ; Software</subject><ispartof>Computational and mathematical methods in medicine, 2016-01, Vol.2016 (2016), p.1-11</ispartof><rights>Copyright © 2016 Liliana I. Barbosa-Santillán et al.</rights><rights>Copyright © 2016 Liliana I. Barbosa-Santillán et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-6c4acc858cf7e30c6398d09371dfb067a83f61d4e46179008c59fb36cf6d7ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913023/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913023/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27366202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alexov, Emil</contributor><creatorcontrib>Barbosa-Santillán, Luis F.</creatorcontrib><creatorcontrib>Calixto-Romo, M. Angeles</creatorcontrib><creatorcontrib>Sánchez-Escobar, Juan J.</creatorcontrib><creatorcontrib>Barbosa-Santillán, Liliana Ibeth</creatorcontrib><title>Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2.</description><subject>Algorithms</subject><subject>Antimicrobial Cationic Peptides - chemistry</subject><subject>Bacterial Infections - drug therapy</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Language</subject><subject>Models, Statistical</subject><subject>Natural Language Processing</subject><subject>Peptides - chemistry</subject><subject>PubMed</subject><subject>Reproducibility of Results</subject><subject>Semantics</subject><subject>Software</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkM1P4zAQxa3VouXztudVjitBYSZObOeCVBBfUhFI9MDNcuwxeJUmXTsF8d8T1FLgxmlG83568_QY-41wiFiWRzmgOMISylzgD7aFslAjIVH9XO9wv8m2U_oHUKIs8RfbzCUXIod8i02m3bOJLmVXjto--JfsjhqyfXiibDwcamN7isE02S3N--AoZScmkcu6NhvXqY-DnrJrMm1oH3bZhjdNor3V3GHT87Pp6eVocnNxdTqejGwB0I-ELYy1qlTWS-JgBa-Ug4pLdL4GIY3iXqArqBAoKwBly8rXXFgvnCTiO-x4aTtf1DNydggeTaPnMcxMfNGdCfqr0oZH_dA96aJCDjkfDP6uDGL3f0Gp17OQLDWNaalbJI0KsMgLqXBAD5aojV1Kkfz6DYJ-61-_9a9X_Q_4n8_R1vB74QOwvwQeQ-vMc_imHQ0MefNBIwAIzl8B97iX9g</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Barbosa-Santillán, Luis F.</creator><creator>Calixto-Romo, M. Angeles</creator><creator>Sánchez-Escobar, Juan J.</creator><creator>Barbosa-Santillán, Liliana Ibeth</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning</title><author>Barbosa-Santillán, Luis F. ; Calixto-Romo, M. Angeles ; Sánchez-Escobar, Juan J. ; Barbosa-Santillán, Liliana Ibeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-6c4acc858cf7e30c6398d09371dfb067a83f61d4e46179008c59fb36cf6d7ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Antimicrobial Cationic Peptides - chemistry</topic><topic>Bacterial Infections - drug therapy</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Language</topic><topic>Models, Statistical</topic><topic>Natural Language Processing</topic><topic>Peptides - chemistry</topic><topic>PubMed</topic><topic>Reproducibility of Results</topic><topic>Semantics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa-Santillán, Luis F.</creatorcontrib><creatorcontrib>Calixto-Romo, M. Angeles</creatorcontrib><creatorcontrib>Sánchez-Escobar, Juan J.</creatorcontrib><creatorcontrib>Barbosa-Santillán, Liliana Ibeth</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa-Santillán, Luis F.</au><au>Calixto-Romo, M. Angeles</au><au>Sánchez-Escobar, Juan J.</au><au>Barbosa-Santillán, Liliana Ibeth</au><au>Alexov, Emil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27366202</pmid><doi>10.1155/2016/1505261</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2016-01, Vol.2016 (2016), p.1-11
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4913023
source MEDLINE; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Algorithms
Antimicrobial Cationic Peptides - chemistry
Bacterial Infections - drug therapy
Computational Biology - methods
Databases, Protein
Drug Design
Humans
Language
Models, Statistical
Natural Language Processing
Peptides - chemistry
PubMed
Reproducibility of Results
Semantics
Software
title Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Identify%20Selective%20Antibacterial%20Peptides%20Based%20on%20Abstracts%20Meaning&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Barbosa-Santill%C3%A1n,%20Luis%20F.&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2016/1505261&rft_dat=%3Cproquest_pubme%3E1801424781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801424781&rft_id=info:pmid/27366202&rfr_iscdi=true