Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord
Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2016-06, Vol.90 (6), p.1189-1202 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1202 |
---|---|
container_issue | 6 |
container_start_page | 1189 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 90 |
creator | Mende, Michael Fletcher, Emily V. Belluardo, Josephine L. Pierce, Joseph P. Bommareddy, Praveen K. Weinrich, Jarret A. Kabir, Zeeba D. Schierberl, Kathryn C. Pagiazitis, John G. Mendelsohn, Alana I. Francesconi, Anna Edwards, Robert H. Milner, Teresa A. Rajadhyaksha, Anjali M. van Roessel, Peter J. Mentis, George Z. Kaltschmidt, Julia A. |
description | Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory-motor connections through presynaptic inhibition. We show that reducing sensory glutamate release results in decreased expression of GABA-synthesizing enzymes GAD65 and GAD67 in GABApre terminals and decreased presynaptic inhibition. Glutamate directs GAD67 expression via the metabotropic glutamate receptor mGluR1β on GABApre terminals and regulates GAD65 expression via autocrine influence on sensory terminal BDNF. We demonstrate that dual retrograde signals from sensory terminals operate hierarchically to direct the molecular differentiation of GABApre terminals and the efficacy of presynaptic inhibition. These retrograde signals comprise a feedback mechanism by which excitatory sensory activity drives GABAergic inhibition to maintain circuit homeostasis.
•Retrograde signals mediate excitatory/inhibitory balance in a spinal reflex circuit•Glutamatergic sensory activity directs GABAergic interneuron synapse differentiation•Glutamate and BNDF collaborate hierarchically to regulate presynaptic GAD65 and GAD67•Presynaptic group I mGluR regulates GABAergic efficacy of an interneuron synapse
A balance of excitatory and inhibitory signaling is critical for the coordinated functioning of neuronal circuits. Mende et al. (2016) demonstrate in a proprioceptive spinal reflex circuit how sensory neuron-derived retrograde signals locally regulate the potency of synapsing GABAergic inhibitory spinal interneurons. |
doi_str_mv | 10.1016/j.neuron.2016.05.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4912012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627316301684</els_id><sourcerecordid>1797877632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-3c33d05a66cf937dae24b672ad1eff67dc5842f78c0fdf87d6a7b56bc13bf1e33</originalsourceid><addsrcrecordid>eNqFUctu1DAUtRCIDoU_QCgSGzYJfiR-bJDQAKVSEYiWBSvLsW9ajzL21E5Gmr_H0ZTyWMDK177nHN97DkLPCW4IJvz1pgkwpxgaWm4N7hqM5QO0IliJuiVKPUQrLBWvORXsBD3JeYMxaTtFHqMTKihnSpAV-n4JIcd0qN9B8ntw1dk4T2ZrJqi-wvU8liJXXxLkQzC7ydvqPNz43k-FUl1B2vpgxlz5UH2Kc4bqcrc8VOuY3FP0aCg9eHZ3nqJvH95frT_WF5_PztdvL2rb0XaqmWXM4c5wbgfFhDNA254LahyBYeDC2U62dBDS4sENUjhuRN_x3hLWDwQYO0Vvjrq7ud-CsxCmZEa9S35r0kFH4_WfneBv9HXc61aRYh0tAq_uBFK8nSFPeuuzhXE0AcpSmkgsBVaSqf9DhRJSCM4W1Zd_QTdxTotbC0pJ0lLeFlR7RNkUc04w3M9NsF5i1ht9jFkvMWvc6RJzob34fed70s9cf5kCxfm9h6Sz9RAsOJ_ATtpF_-8ffgDQrrz5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799814264</pqid></control><display><type>article</type><title>Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mende, Michael ; Fletcher, Emily V. ; Belluardo, Josephine L. ; Pierce, Joseph P. ; Bommareddy, Praveen K. ; Weinrich, Jarret A. ; Kabir, Zeeba D. ; Schierberl, Kathryn C. ; Pagiazitis, John G. ; Mendelsohn, Alana I. ; Francesconi, Anna ; Edwards, Robert H. ; Milner, Teresa A. ; Rajadhyaksha, Anjali M. ; van Roessel, Peter J. ; Mentis, George Z. ; Kaltschmidt, Julia A.</creator><creatorcontrib>Mende, Michael ; Fletcher, Emily V. ; Belluardo, Josephine L. ; Pierce, Joseph P. ; Bommareddy, Praveen K. ; Weinrich, Jarret A. ; Kabir, Zeeba D. ; Schierberl, Kathryn C. ; Pagiazitis, John G. ; Mendelsohn, Alana I. ; Francesconi, Anna ; Edwards, Robert H. ; Milner, Teresa A. ; Rajadhyaksha, Anjali M. ; van Roessel, Peter J. ; Mentis, George Z. ; Kaltschmidt, Julia A.</creatorcontrib><description>Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory-motor connections through presynaptic inhibition. We show that reducing sensory glutamate release results in decreased expression of GABA-synthesizing enzymes GAD65 and GAD67 in GABApre terminals and decreased presynaptic inhibition. Glutamate directs GAD67 expression via the metabotropic glutamate receptor mGluR1β on GABApre terminals and regulates GAD65 expression via autocrine influence on sensory terminal BDNF. We demonstrate that dual retrograde signals from sensory terminals operate hierarchically to direct the molecular differentiation of GABApre terminals and the efficacy of presynaptic inhibition. These retrograde signals comprise a feedback mechanism by which excitatory sensory activity drives GABAergic inhibition to maintain circuit homeostasis.
•Retrograde signals mediate excitatory/inhibitory balance in a spinal reflex circuit•Glutamatergic sensory activity directs GABAergic interneuron synapse differentiation•Glutamate and BNDF collaborate hierarchically to regulate presynaptic GAD65 and GAD67•Presynaptic group I mGluR regulates GABAergic efficacy of an interneuron synapse
A balance of excitatory and inhibitory signaling is critical for the coordinated functioning of neuronal circuits. Mende et al. (2016) demonstrate in a proprioceptive spinal reflex circuit how sensory neuron-derived retrograde signals locally regulate the potency of synapsing GABAergic inhibitory spinal interneurons.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2016.05.008</identifier><identifier>PMID: 27263971</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Brain-Derived Neurotrophic Factor - physiology ; Enzymes ; gamma-Aminobutyric Acid - biosynthesis ; Glutamate Decarboxylase - biosynthesis ; Glutamic Acid - metabolism ; Glutamic Acid - physiology ; Grants ; Interneurons - physiology ; Mice ; Models, Neurological ; Neural Inhibition - physiology ; Neurons ; Neurons - metabolism ; Neurons - physiology ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - physiology ; Receptors, Metabotropic Glutamate - physiology ; Rodents ; Sensory Receptor Cells - metabolism ; Spinal Cord - metabolism ; Spinal Cord - physiology ; Synapses - metabolism ; Synapses - physiology ; Vesicular Glutamate Transport Protein 1 - genetics</subject><ispartof>Neuron (Cambridge, Mass.), 2016-06, Vol.90 (6), p.1189-1202</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jun 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-3c33d05a66cf937dae24b672ad1eff67dc5842f78c0fdf87d6a7b56bc13bf1e33</citedby><cites>FETCH-LOGICAL-c524t-3c33d05a66cf937dae24b672ad1eff67dc5842f78c0fdf87d6a7b56bc13bf1e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627316301684$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27263971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mende, Michael</creatorcontrib><creatorcontrib>Fletcher, Emily V.</creatorcontrib><creatorcontrib>Belluardo, Josephine L.</creatorcontrib><creatorcontrib>Pierce, Joseph P.</creatorcontrib><creatorcontrib>Bommareddy, Praveen K.</creatorcontrib><creatorcontrib>Weinrich, Jarret A.</creatorcontrib><creatorcontrib>Kabir, Zeeba D.</creatorcontrib><creatorcontrib>Schierberl, Kathryn C.</creatorcontrib><creatorcontrib>Pagiazitis, John G.</creatorcontrib><creatorcontrib>Mendelsohn, Alana I.</creatorcontrib><creatorcontrib>Francesconi, Anna</creatorcontrib><creatorcontrib>Edwards, Robert H.</creatorcontrib><creatorcontrib>Milner, Teresa A.</creatorcontrib><creatorcontrib>Rajadhyaksha, Anjali M.</creatorcontrib><creatorcontrib>van Roessel, Peter J.</creatorcontrib><creatorcontrib>Mentis, George Z.</creatorcontrib><creatorcontrib>Kaltschmidt, Julia A.</creatorcontrib><title>Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory-motor connections through presynaptic inhibition. We show that reducing sensory glutamate release results in decreased expression of GABA-synthesizing enzymes GAD65 and GAD67 in GABApre terminals and decreased presynaptic inhibition. Glutamate directs GAD67 expression via the metabotropic glutamate receptor mGluR1β on GABApre terminals and regulates GAD65 expression via autocrine influence on sensory terminal BDNF. We demonstrate that dual retrograde signals from sensory terminals operate hierarchically to direct the molecular differentiation of GABApre terminals and the efficacy of presynaptic inhibition. These retrograde signals comprise a feedback mechanism by which excitatory sensory activity drives GABAergic inhibition to maintain circuit homeostasis.
•Retrograde signals mediate excitatory/inhibitory balance in a spinal reflex circuit•Glutamatergic sensory activity directs GABAergic interneuron synapse differentiation•Glutamate and BNDF collaborate hierarchically to regulate presynaptic GAD65 and GAD67•Presynaptic group I mGluR regulates GABAergic efficacy of an interneuron synapse
A balance of excitatory and inhibitory signaling is critical for the coordinated functioning of neuronal circuits. Mende et al. (2016) demonstrate in a proprioceptive spinal reflex circuit how sensory neuron-derived retrograde signals locally regulate the potency of synapsing GABAergic inhibitory spinal interneurons.</description><subject>Animals</subject><subject>Brain-Derived Neurotrophic Factor - physiology</subject><subject>Enzymes</subject><subject>gamma-Aminobutyric Acid - biosynthesis</subject><subject>Glutamate Decarboxylase - biosynthesis</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic Acid - physiology</subject><subject>Grants</subject><subject>Interneurons - physiology</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - physiology</subject><subject>Receptors, Metabotropic Glutamate - physiology</subject><subject>Rodents</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Spinal Cord - metabolism</subject><subject>Spinal Cord - physiology</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><subject>Vesicular Glutamate Transport Protein 1 - genetics</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctu1DAUtRCIDoU_QCgSGzYJfiR-bJDQAKVSEYiWBSvLsW9ajzL21E5Gmr_H0ZTyWMDK177nHN97DkLPCW4IJvz1pgkwpxgaWm4N7hqM5QO0IliJuiVKPUQrLBWvORXsBD3JeYMxaTtFHqMTKihnSpAV-n4JIcd0qN9B8ntw1dk4T2ZrJqi-wvU8liJXXxLkQzC7ydvqPNz43k-FUl1B2vpgxlz5UH2Kc4bqcrc8VOuY3FP0aCg9eHZ3nqJvH95frT_WF5_PztdvL2rb0XaqmWXM4c5wbgfFhDNA254LahyBYeDC2U62dBDS4sENUjhuRN_x3hLWDwQYO0Vvjrq7ud-CsxCmZEa9S35r0kFH4_WfneBv9HXc61aRYh0tAq_uBFK8nSFPeuuzhXE0AcpSmkgsBVaSqf9DhRJSCM4W1Zd_QTdxTotbC0pJ0lLeFlR7RNkUc04w3M9NsF5i1ht9jFkvMWvc6RJzob34fed70s9cf5kCxfm9h6Sz9RAsOJ_ATtpF_-8ffgDQrrz5</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Mende, Michael</creator><creator>Fletcher, Emily V.</creator><creator>Belluardo, Josephine L.</creator><creator>Pierce, Joseph P.</creator><creator>Bommareddy, Praveen K.</creator><creator>Weinrich, Jarret A.</creator><creator>Kabir, Zeeba D.</creator><creator>Schierberl, Kathryn C.</creator><creator>Pagiazitis, John G.</creator><creator>Mendelsohn, Alana I.</creator><creator>Francesconi, Anna</creator><creator>Edwards, Robert H.</creator><creator>Milner, Teresa A.</creator><creator>Rajadhyaksha, Anjali M.</creator><creator>van Roessel, Peter J.</creator><creator>Mentis, George Z.</creator><creator>Kaltschmidt, Julia A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160615</creationdate><title>Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord</title><author>Mende, Michael ; Fletcher, Emily V. ; Belluardo, Josephine L. ; Pierce, Joseph P. ; Bommareddy, Praveen K. ; Weinrich, Jarret A. ; Kabir, Zeeba D. ; Schierberl, Kathryn C. ; Pagiazitis, John G. ; Mendelsohn, Alana I. ; Francesconi, Anna ; Edwards, Robert H. ; Milner, Teresa A. ; Rajadhyaksha, Anjali M. ; van Roessel, Peter J. ; Mentis, George Z. ; Kaltschmidt, Julia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-3c33d05a66cf937dae24b672ad1eff67dc5842f78c0fdf87d6a7b56bc13bf1e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Brain-Derived Neurotrophic Factor - physiology</topic><topic>Enzymes</topic><topic>gamma-Aminobutyric Acid - biosynthesis</topic><topic>Glutamate Decarboxylase - biosynthesis</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic Acid - physiology</topic><topic>Grants</topic><topic>Interneurons - physiology</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - physiology</topic><topic>Receptors, Metabotropic Glutamate - physiology</topic><topic>Rodents</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Spinal Cord - metabolism</topic><topic>Spinal Cord - physiology</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><topic>Vesicular Glutamate Transport Protein 1 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mende, Michael</creatorcontrib><creatorcontrib>Fletcher, Emily V.</creatorcontrib><creatorcontrib>Belluardo, Josephine L.</creatorcontrib><creatorcontrib>Pierce, Joseph P.</creatorcontrib><creatorcontrib>Bommareddy, Praveen K.</creatorcontrib><creatorcontrib>Weinrich, Jarret A.</creatorcontrib><creatorcontrib>Kabir, Zeeba D.</creatorcontrib><creatorcontrib>Schierberl, Kathryn C.</creatorcontrib><creatorcontrib>Pagiazitis, John G.</creatorcontrib><creatorcontrib>Mendelsohn, Alana I.</creatorcontrib><creatorcontrib>Francesconi, Anna</creatorcontrib><creatorcontrib>Edwards, Robert H.</creatorcontrib><creatorcontrib>Milner, Teresa A.</creatorcontrib><creatorcontrib>Rajadhyaksha, Anjali M.</creatorcontrib><creatorcontrib>van Roessel, Peter J.</creatorcontrib><creatorcontrib>Mentis, George Z.</creatorcontrib><creatorcontrib>Kaltschmidt, Julia A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mende, Michael</au><au>Fletcher, Emily V.</au><au>Belluardo, Josephine L.</au><au>Pierce, Joseph P.</au><au>Bommareddy, Praveen K.</au><au>Weinrich, Jarret A.</au><au>Kabir, Zeeba D.</au><au>Schierberl, Kathryn C.</au><au>Pagiazitis, John G.</au><au>Mendelsohn, Alana I.</au><au>Francesconi, Anna</au><au>Edwards, Robert H.</au><au>Milner, Teresa A.</au><au>Rajadhyaksha, Anjali M.</au><au>van Roessel, Peter J.</au><au>Mentis, George Z.</au><au>Kaltschmidt, Julia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2016-06-15</date><risdate>2016</risdate><volume>90</volume><issue>6</issue><spage>1189</spage><epage>1202</epage><pages>1189-1202</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory-motor connections through presynaptic inhibition. We show that reducing sensory glutamate release results in decreased expression of GABA-synthesizing enzymes GAD65 and GAD67 in GABApre terminals and decreased presynaptic inhibition. Glutamate directs GAD67 expression via the metabotropic glutamate receptor mGluR1β on GABApre terminals and regulates GAD65 expression via autocrine influence on sensory terminal BDNF. We demonstrate that dual retrograde signals from sensory terminals operate hierarchically to direct the molecular differentiation of GABApre terminals and the efficacy of presynaptic inhibition. These retrograde signals comprise a feedback mechanism by which excitatory sensory activity drives GABAergic inhibition to maintain circuit homeostasis.
•Retrograde signals mediate excitatory/inhibitory balance in a spinal reflex circuit•Glutamatergic sensory activity directs GABAergic interneuron synapse differentiation•Glutamate and BNDF collaborate hierarchically to regulate presynaptic GAD65 and GAD67•Presynaptic group I mGluR regulates GABAergic efficacy of an interneuron synapse
A balance of excitatory and inhibitory signaling is critical for the coordinated functioning of neuronal circuits. Mende et al. (2016) demonstrate in a proprioceptive spinal reflex circuit how sensory neuron-derived retrograde signals locally regulate the potency of synapsing GABAergic inhibitory spinal interneurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27263971</pmid><doi>10.1016/j.neuron.2016.05.008</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2016-06, Vol.90 (6), p.1189-1202 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4912012 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Brain-Derived Neurotrophic Factor - physiology Enzymes gamma-Aminobutyric Acid - biosynthesis Glutamate Decarboxylase - biosynthesis Glutamic Acid - metabolism Glutamic Acid - physiology Grants Interneurons - physiology Mice Models, Neurological Neural Inhibition - physiology Neurons Neurons - metabolism Neurons - physiology Presynaptic Terminals - metabolism Presynaptic Terminals - physiology Receptors, Metabotropic Glutamate - physiology Rodents Sensory Receptor Cells - metabolism Spinal Cord - metabolism Spinal Cord - physiology Synapses - metabolism Synapses - physiology Vesicular Glutamate Transport Protein 1 - genetics |
title | Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensory-Derived%20Glutamate%20Regulates%20Presynaptic%20Inhibitory%20Terminals%20in%20Mouse%20Spinal%20Cord&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Mende,%20Michael&rft.date=2016-06-15&rft.volume=90&rft.issue=6&rft.spage=1189&rft.epage=1202&rft.pages=1189-1202&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2016.05.008&rft_dat=%3Cproquest_pubme%3E1797877632%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799814264&rft_id=info:pmid/27263971&rft_els_id=S0896627316301684&rfr_iscdi=true |