PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection

The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients. 1 , 2 Here we show that the mitochondrial biogenesis regulator, PGC1α, 3 ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2016-03, Vol.531 (7595), p.528-532
Hauptverfasser: Tran, Mei T., Zsengeller, Zsuzsanna K., Berg, Anders H., Khankin, Eliyahu V., Bhasin, Manoj K., Kim, Wondong, Clish, Clary B., Stillman, Isaac E., Karumanchi, S. Ananth, Rhee, Eugene P., Parikh, Samir M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 7595
container_start_page 528
container_title Nature (London)
container_volume 531
creator Tran, Mei T.
Zsengeller, Zsuzsanna K.
Berg, Anders H.
Khankin, Eliyahu V.
Bhasin, Manoj K.
Kim, Wondong
Clish, Clary B.
Stillman, Isaac E.
Karumanchi, S. Ananth
Rhee, Eugene P.
Parikh, Samir M.
description The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients. 1 , 2 Here we show that the mitochondrial biogenesis regulator, PGC1α, 3 , 4 is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α −/− mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α −/− mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE 2 , a secreted autocoid that maintains renal function. 5 Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.
doi_str_mv 10.1038/nature17184
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4909121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_4909121</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_49091213</originalsourceid><addsrcrecordid>eNqljTFOwzAUQK0KRFNg4gK-QKh_YmJnQUKFlgl16G45zYf-4tiR7Vb0WFyEM8HAwsz0hie9x9gNiFsQtZ57mw8RQYGWE1aAVE0pG63OWCFEpUuh62bKZinthRB3oOQFm1ZNqysFbcHW69UCvj7LHkf0PfrMXx4eeUchnXzeYaLEHfn3xMMH9TbTEfmA2XbBURp4Djyit46PMWTcZgr-ip2_Wpfw-peX7H75tFk8l-OhG7Df_iyidWaMNNh4MsGS-Ws87cxbOBrZihYqqP8d-Aa2u19M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tran, Mei T. ; Zsengeller, Zsuzsanna K. ; Berg, Anders H. ; Khankin, Eliyahu V. ; Bhasin, Manoj K. ; Kim, Wondong ; Clish, Clary B. ; Stillman, Isaac E. ; Karumanchi, S. Ananth ; Rhee, Eugene P. ; Parikh, Samir M.</creator><creatorcontrib>Tran, Mei T. ; Zsengeller, Zsuzsanna K. ; Berg, Anders H. ; Khankin, Eliyahu V. ; Bhasin, Manoj K. ; Kim, Wondong ; Clish, Clary B. ; Stillman, Isaac E. ; Karumanchi, S. Ananth ; Rhee, Eugene P. ; Parikh, Samir M.</creatorcontrib><description>The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients. 1 , 2 Here we show that the mitochondrial biogenesis regulator, PGC1α, 3 , 4 is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α −/− mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α −/− mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE 2 , a secreted autocoid that maintains renal function. 5 Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature17184</identifier><identifier>PMID: 26982719</identifier><language>eng</language><ispartof>Nature (London), 2016-03, Vol.531 (7595), p.528-532</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Tran, Mei T.</creatorcontrib><creatorcontrib>Zsengeller, Zsuzsanna K.</creatorcontrib><creatorcontrib>Berg, Anders H.</creatorcontrib><creatorcontrib>Khankin, Eliyahu V.</creatorcontrib><creatorcontrib>Bhasin, Manoj K.</creatorcontrib><creatorcontrib>Kim, Wondong</creatorcontrib><creatorcontrib>Clish, Clary B.</creatorcontrib><creatorcontrib>Stillman, Isaac E.</creatorcontrib><creatorcontrib>Karumanchi, S. Ananth</creatorcontrib><creatorcontrib>Rhee, Eugene P.</creatorcontrib><creatorcontrib>Parikh, Samir M.</creatorcontrib><title>PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection</title><title>Nature (London)</title><description>The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients. 1 , 2 Here we show that the mitochondrial biogenesis regulator, PGC1α, 3 , 4 is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α −/− mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α −/− mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE 2 , a secreted autocoid that maintains renal function. 5 Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.</description><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqljTFOwzAUQK0KRFNg4gK-QKh_YmJnQUKFlgl16G45zYf-4tiR7Vb0WFyEM8HAwsz0hie9x9gNiFsQtZ57mw8RQYGWE1aAVE0pG63OWCFEpUuh62bKZinthRB3oOQFm1ZNqysFbcHW69UCvj7LHkf0PfrMXx4eeUchnXzeYaLEHfn3xMMH9TbTEfmA2XbBURp4Djyit46PMWTcZgr-ip2_Wpfw-peX7H75tFk8l-OhG7Df_iyidWaMNNh4MsGS-Ws87cxbOBrZihYqqP8d-Aa2u19M</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Tran, Mei T.</creator><creator>Zsengeller, Zsuzsanna K.</creator><creator>Berg, Anders H.</creator><creator>Khankin, Eliyahu V.</creator><creator>Bhasin, Manoj K.</creator><creator>Kim, Wondong</creator><creator>Clish, Clary B.</creator><creator>Stillman, Isaac E.</creator><creator>Karumanchi, S. Ananth</creator><creator>Rhee, Eugene P.</creator><creator>Parikh, Samir M.</creator><scope>5PM</scope></search><sort><creationdate>20160316</creationdate><title>PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection</title><author>Tran, Mei T. ; Zsengeller, Zsuzsanna K. ; Berg, Anders H. ; Khankin, Eliyahu V. ; Bhasin, Manoj K. ; Kim, Wondong ; Clish, Clary B. ; Stillman, Isaac E. ; Karumanchi, S. Ananth ; Rhee, Eugene P. ; Parikh, Samir M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_49091213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Mei T.</creatorcontrib><creatorcontrib>Zsengeller, Zsuzsanna K.</creatorcontrib><creatorcontrib>Berg, Anders H.</creatorcontrib><creatorcontrib>Khankin, Eliyahu V.</creatorcontrib><creatorcontrib>Bhasin, Manoj K.</creatorcontrib><creatorcontrib>Kim, Wondong</creatorcontrib><creatorcontrib>Clish, Clary B.</creatorcontrib><creatorcontrib>Stillman, Isaac E.</creatorcontrib><creatorcontrib>Karumanchi, S. Ananth</creatorcontrib><creatorcontrib>Rhee, Eugene P.</creatorcontrib><creatorcontrib>Parikh, Samir M.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Mei T.</au><au>Zsengeller, Zsuzsanna K.</au><au>Berg, Anders H.</au><au>Khankin, Eliyahu V.</au><au>Bhasin, Manoj K.</au><au>Kim, Wondong</au><au>Clish, Clary B.</au><au>Stillman, Isaac E.</au><au>Karumanchi, S. Ananth</au><au>Rhee, Eugene P.</au><au>Parikh, Samir M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection</atitle><jtitle>Nature (London)</jtitle><date>2016-03-16</date><risdate>2016</risdate><volume>531</volume><issue>7595</issue><spage>528</spage><epage>532</epage><pages>528-532</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients. 1 , 2 Here we show that the mitochondrial biogenesis regulator, PGC1α, 3 , 4 is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α −/− mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α −/− mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE 2 , a secreted autocoid that maintains renal function. 5 Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.</abstract><pmid>26982719</pmid><doi>10.1038/nature17184</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2016-03, Vol.531 (7595), p.528-532
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4909121
source Nature; SpringerLink Journals - AutoHoldings
title PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PGC1%CE%B1-dependent%20NAD%20biosynthesis%20links%20oxidative%20metabolism%20to%20renal%20protection&rft.jtitle=Nature%20(London)&rft.au=Tran,%20Mei%20T.&rft.date=2016-03-16&rft.volume=531&rft.issue=7595&rft.spage=528&rft.epage=532&rft.pages=528-532&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature17184&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_4909121%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26982719&rfr_iscdi=true