PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection
The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients. 1 , 2 Here we show that the mitochondrial biogenesis regulator, PGC1α, 3 ,...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2016-03, Vol.531 (7595), p.528-532 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | 7595 |
container_start_page | 528 |
container_title | Nature (London) |
container_volume | 531 |
creator | Tran, Mei T. Zsengeller, Zsuzsanna K. Berg, Anders H. Khankin, Eliyahu V. Bhasin, Manoj K. Kim, Wondong Clish, Clary B. Stillman, Isaac E. Karumanchi, S. Ananth Rhee, Eugene P. Parikh, Samir M. |
description | The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.
1
,
2
Here we show that the mitochondrial biogenesis regulator, PGC1α,
3
,
4
is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α
−/−
mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α
−/−
mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD
de novo
from amino acids whereas PGC1α deficiency or AKI attenuated the
de novo
pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE
2
, a secreted autocoid that maintains renal function.
5
Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance. |
doi_str_mv | 10.1038/nature17184 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4909121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_4909121</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_49091213</originalsourceid><addsrcrecordid>eNqljTFOwzAUQK0KRFNg4gK-QKh_YmJnQUKFlgl16G45zYf-4tiR7Vb0WFyEM8HAwsz0hie9x9gNiFsQtZ57mw8RQYGWE1aAVE0pG63OWCFEpUuh62bKZinthRB3oOQFm1ZNqysFbcHW69UCvj7LHkf0PfrMXx4eeUchnXzeYaLEHfn3xMMH9TbTEfmA2XbBURp4Djyit46PMWTcZgr-ip2_Wpfw-peX7H75tFk8l-OhG7Df_iyidWaMNNh4MsGS-Ws87cxbOBrZihYqqP8d-Aa2u19M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tran, Mei T. ; Zsengeller, Zsuzsanna K. ; Berg, Anders H. ; Khankin, Eliyahu V. ; Bhasin, Manoj K. ; Kim, Wondong ; Clish, Clary B. ; Stillman, Isaac E. ; Karumanchi, S. Ananth ; Rhee, Eugene P. ; Parikh, Samir M.</creator><creatorcontrib>Tran, Mei T. ; Zsengeller, Zsuzsanna K. ; Berg, Anders H. ; Khankin, Eliyahu V. ; Bhasin, Manoj K. ; Kim, Wondong ; Clish, Clary B. ; Stillman, Isaac E. ; Karumanchi, S. Ananth ; Rhee, Eugene P. ; Parikh, Samir M.</creatorcontrib><description>The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.
1
,
2
Here we show that the mitochondrial biogenesis regulator, PGC1α,
3
,
4
is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α
−/−
mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α
−/−
mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD
de novo
from amino acids whereas PGC1α deficiency or AKI attenuated the
de novo
pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE
2
, a secreted autocoid that maintains renal function.
5
Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature17184</identifier><identifier>PMID: 26982719</identifier><language>eng</language><ispartof>Nature (London), 2016-03, Vol.531 (7595), p.528-532</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Tran, Mei T.</creatorcontrib><creatorcontrib>Zsengeller, Zsuzsanna K.</creatorcontrib><creatorcontrib>Berg, Anders H.</creatorcontrib><creatorcontrib>Khankin, Eliyahu V.</creatorcontrib><creatorcontrib>Bhasin, Manoj K.</creatorcontrib><creatorcontrib>Kim, Wondong</creatorcontrib><creatorcontrib>Clish, Clary B.</creatorcontrib><creatorcontrib>Stillman, Isaac E.</creatorcontrib><creatorcontrib>Karumanchi, S. Ananth</creatorcontrib><creatorcontrib>Rhee, Eugene P.</creatorcontrib><creatorcontrib>Parikh, Samir M.</creatorcontrib><title>PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection</title><title>Nature (London)</title><description>The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.
1
,
2
Here we show that the mitochondrial biogenesis regulator, PGC1α,
3
,
4
is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α
−/−
mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α
−/−
mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD
de novo
from amino acids whereas PGC1α deficiency or AKI attenuated the
de novo
pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE
2
, a secreted autocoid that maintains renal function.
5
Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.</description><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqljTFOwzAUQK0KRFNg4gK-QKh_YmJnQUKFlgl16G45zYf-4tiR7Vb0WFyEM8HAwsz0hie9x9gNiFsQtZ57mw8RQYGWE1aAVE0pG63OWCFEpUuh62bKZinthRB3oOQFm1ZNqysFbcHW69UCvj7LHkf0PfrMXx4eeUchnXzeYaLEHfn3xMMH9TbTEfmA2XbBURp4Djyit46PMWTcZgr-ip2_Wpfw-peX7H75tFk8l-OhG7Df_iyidWaMNNh4MsGS-Ws87cxbOBrZihYqqP8d-Aa2u19M</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Tran, Mei T.</creator><creator>Zsengeller, Zsuzsanna K.</creator><creator>Berg, Anders H.</creator><creator>Khankin, Eliyahu V.</creator><creator>Bhasin, Manoj K.</creator><creator>Kim, Wondong</creator><creator>Clish, Clary B.</creator><creator>Stillman, Isaac E.</creator><creator>Karumanchi, S. Ananth</creator><creator>Rhee, Eugene P.</creator><creator>Parikh, Samir M.</creator><scope>5PM</scope></search><sort><creationdate>20160316</creationdate><title>PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection</title><author>Tran, Mei T. ; Zsengeller, Zsuzsanna K. ; Berg, Anders H. ; Khankin, Eliyahu V. ; Bhasin, Manoj K. ; Kim, Wondong ; Clish, Clary B. ; Stillman, Isaac E. ; Karumanchi, S. Ananth ; Rhee, Eugene P. ; Parikh, Samir M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_49091213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Mei T.</creatorcontrib><creatorcontrib>Zsengeller, Zsuzsanna K.</creatorcontrib><creatorcontrib>Berg, Anders H.</creatorcontrib><creatorcontrib>Khankin, Eliyahu V.</creatorcontrib><creatorcontrib>Bhasin, Manoj K.</creatorcontrib><creatorcontrib>Kim, Wondong</creatorcontrib><creatorcontrib>Clish, Clary B.</creatorcontrib><creatorcontrib>Stillman, Isaac E.</creatorcontrib><creatorcontrib>Karumanchi, S. Ananth</creatorcontrib><creatorcontrib>Rhee, Eugene P.</creatorcontrib><creatorcontrib>Parikh, Samir M.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Mei T.</au><au>Zsengeller, Zsuzsanna K.</au><au>Berg, Anders H.</au><au>Khankin, Eliyahu V.</au><au>Bhasin, Manoj K.</au><au>Kim, Wondong</au><au>Clish, Clary B.</au><au>Stillman, Isaac E.</au><au>Karumanchi, S. Ananth</au><au>Rhee, Eugene P.</au><au>Parikh, Samir M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection</atitle><jtitle>Nature (London)</jtitle><date>2016-03-16</date><risdate>2016</risdate><volume>531</volume><issue>7595</issue><spage>528</spage><epage>532</epage><pages>528-532</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.
1
,
2
Here we show that the mitochondrial biogenesis regulator, PGC1α,
3
,
4
is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α
−/−
mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α
−/−
mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD
de novo
from amino acids whereas PGC1α deficiency or AKI attenuated the
de novo
pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE
2
, a secreted autocoid that maintains renal function.
5
Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.</abstract><pmid>26982719</pmid><doi>10.1038/nature17184</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2016-03, Vol.531 (7595), p.528-532 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4909121 |
source | Nature; SpringerLink Journals - AutoHoldings |
title | PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PGC1%CE%B1-dependent%20NAD%20biosynthesis%20links%20oxidative%20metabolism%20to%20renal%20protection&rft.jtitle=Nature%20(London)&rft.au=Tran,%20Mei%20T.&rft.date=2016-03-16&rft.volume=531&rft.issue=7595&rft.spage=528&rft.epage=532&rft.pages=528-532&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature17184&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_4909121%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26982719&rfr_iscdi=true |