Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension in which right ventricular (RV) afterload is increased and death typically occurs due to decompensated RV hypertrophy and failure. Collagen accumulation has been implicated in pulmonary artery remodeling, but how it aff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological reports 2016-06, Vol.4 (11), p.e12815-n/a
Hauptverfasser: Golob, Mark J., Wang, Zhijie, Prostrollo, Anthony J., Hacker, Timothy A., Chesler, Naomi C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e12815
container_title Physiological reports
container_volume 4
creator Golob, Mark J.
Wang, Zhijie
Prostrollo, Anthony J.
Hacker, Timothy A.
Chesler, Naomi C.
description Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension in which right ventricular (RV) afterload is increased and death typically occurs due to decompensated RV hypertrophy and failure. Collagen accumulation has been implicated in pulmonary artery remodeling, but how it affects RV performance remains unclear. Here, we sought to identify the role of collagen turnover, defined as the balance between collagen synthesis and degradation, in RV structure and function in PAH. To do so, we exposed mutant (Col1a1R/R) mice, in which collagen type I degradation is impaired such that collagen turnover is reduced, and wild‐type (Col1a1+/+) littermates to 14 days of chronic hypoxia combined with SUGEN treatment (HySu) to recapitulate characteristics of clinical PAH. RV structure and function were measured by echocardiography, RV catheterization, and histology. Despite comparable increases in RV systolic pressure (Col1a1+/+: 46 ± 2 mmHg; Col1a1R/R: 47 ± 3 mmHg), the impaired collagen degradation in Col1a1R/R mice resulted in no RV collagen accumulation, limited RV hypertrophy, and maintained right ventricular‐pulmonary vascular coupling with HySu exposure. The preservation of cardiac function in the mutant mice indicates a beneficial role of limited collagen turnover via impaired degradation in RV remodeling in response to chronic pressure overload. Our results suggest novel treatments that reduce collagen turnover may offer a new therapeutic strategy for PAH patients. By the novel use of a mouse model of PAH with impaired collagen degradation, our study shows that the inhibition of collagen turnover attenuates RV collagen accumulation, limits RV hypertrophy, and preserves cardiac function. These findings may lead to targeted clinical treatments to prevent RV dysfunction and failure in PAH.
doi_str_mv 10.14814/phy2.12815
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4908492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793901226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4855-90ccf5683841c1c6519a976756946cf87e6aa371aae87c28d728ded073d9f3723</originalsourceid><addsrcrecordid>eNqNkkFrFDEUxwdRbKk9eZeAF0G2JpnJJLkIUtQKC3pQ0FN4zbzZTZlJxiSzZW9-hH5GP4nZbl2qBxES8kh-78_Le_-qesroGWsUa15N6y0_Y1wx8aA65lSwhWLy68N78VF1mtIVpZTRuta0eVwdcckFL-u4ulm60WXnV8SGYYAVepLn6MMGI9k4ONxCwp8_biImlzJ4iwRyRj9DxkSiW60z2aDP0dl5gEi6bepnb7MLnoDvSO8uYyipxHkyzcMYPMQtgZgxOhjIejthiX0q_JPqUQ9DwtO786T68u7t5_OLxfLj-w_nb5YL2yghFppa24tW1aphltlWMA1atlK0umltryS2ALVkAKik5aqTZWNHZd3pvpa8Pqle73Wn-XLEzu6qh8FM0Y2lNhPAmT9fvFubVdiYRlPV6J3AizuBGL7PmLIZXbJY2uUxzMkwRVUruBb_gUpdBsM4bwv6_C_0KpR5lE4YzjWtlaCaFerlnrKlrSlif6ibUXPrC7Pzhbn1RaGf3f_qgf3tggLwPXDtBtz-S8t8uvjG96q_AKapyEs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290385091</pqid></control><display><type>article</type><title>Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Golob, Mark J. ; Wang, Zhijie ; Prostrollo, Anthony J. ; Hacker, Timothy A. ; Chesler, Naomi C.</creator><creatorcontrib>Golob, Mark J. ; Wang, Zhijie ; Prostrollo, Anthony J. ; Hacker, Timothy A. ; Chesler, Naomi C.</creatorcontrib><description>Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension in which right ventricular (RV) afterload is increased and death typically occurs due to decompensated RV hypertrophy and failure. Collagen accumulation has been implicated in pulmonary artery remodeling, but how it affects RV performance remains unclear. Here, we sought to identify the role of collagen turnover, defined as the balance between collagen synthesis and degradation, in RV structure and function in PAH. To do so, we exposed mutant (Col1a1R/R) mice, in which collagen type I degradation is impaired such that collagen turnover is reduced, and wild‐type (Col1a1+/+) littermates to 14 days of chronic hypoxia combined with SUGEN treatment (HySu) to recapitulate characteristics of clinical PAH. RV structure and function were measured by echocardiography, RV catheterization, and histology. Despite comparable increases in RV systolic pressure (Col1a1+/+: 46 ± 2 mmHg; Col1a1R/R: 47 ± 3 mmHg), the impaired collagen degradation in Col1a1R/R mice resulted in no RV collagen accumulation, limited RV hypertrophy, and maintained right ventricular‐pulmonary vascular coupling with HySu exposure. The preservation of cardiac function in the mutant mice indicates a beneficial role of limited collagen turnover via impaired degradation in RV remodeling in response to chronic pressure overload. Our results suggest novel treatments that reduce collagen turnover may offer a new therapeutic strategy for PAH patients. By the novel use of a mouse model of PAH with impaired collagen degradation, our study shows that the inhibition of collagen turnover attenuates RV collagen accumulation, limits RV hypertrophy, and preserves cardiac function. These findings may lead to targeted clinical treatments to prevent RV dysfunction and failure in PAH.</description><identifier>ISSN: 2051-817X</identifier><identifier>EISSN: 2051-817X</identifier><identifier>DOI: 10.14814/phy2.12815</identifier><identifier>PMID: 27252252</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Blood Pressure ; Cardiac energetics ; Cardiac function ; Cardiovascular Conditions, Disorders and Treatments ; Catheterization ; Collagen ; Collagen (type I) ; Collagen - genetics ; Collagen - metabolism ; Collagenase ; Collagenases - genetics ; Collagenases - metabolism ; Coronary vessels ; Echocardiography ; effective arterial elastance ; Efficiency ; Fibrosis ; Fibrosis - metabolism ; Fibrosis - pathology ; Fibrosis - physiopathology ; Heart ; Hypertension ; Hypertension, Pulmonary - metabolism ; Hypertension, Pulmonary - pathology ; Hypertension, Pulmonary - physiopathology ; Hypertrophy ; Hypotheses ; Hypoxia ; Intubation ; Lung diseases ; Mice ; Mice, Transgenic ; Original Research ; Physiology ; Preservation ; pressure‐volume loop ; Pulmonary artery ; Pulmonary Circulation ; Pulmonary hypertension ; Respiratory Conditions Disorder and Diseases ; Structure-function relationships ; Trends ; Ventricle ; Ventricular Dysfunction, Right - metabolism ; Ventricular Dysfunction, Right - pathology ; Ventricular Dysfunction, Right - physiopathology</subject><ispartof>Physiological reports, 2016-06, Vol.4 (11), p.e12815-n/a</ispartof><rights>2016 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.</rights><rights>2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4855-90ccf5683841c1c6519a976756946cf87e6aa371aae87c28d728ded073d9f3723</citedby><cites>FETCH-LOGICAL-c4855-90ccf5683841c1c6519a976756946cf87e6aa371aae87c28d728ded073d9f3723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908492/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908492/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27252252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Golob, Mark J.</creatorcontrib><creatorcontrib>Wang, Zhijie</creatorcontrib><creatorcontrib>Prostrollo, Anthony J.</creatorcontrib><creatorcontrib>Hacker, Timothy A.</creatorcontrib><creatorcontrib>Chesler, Naomi C.</creatorcontrib><title>Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension</title><title>Physiological reports</title><addtitle>Physiol Rep</addtitle><description>Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension in which right ventricular (RV) afterload is increased and death typically occurs due to decompensated RV hypertrophy and failure. Collagen accumulation has been implicated in pulmonary artery remodeling, but how it affects RV performance remains unclear. Here, we sought to identify the role of collagen turnover, defined as the balance between collagen synthesis and degradation, in RV structure and function in PAH. To do so, we exposed mutant (Col1a1R/R) mice, in which collagen type I degradation is impaired such that collagen turnover is reduced, and wild‐type (Col1a1+/+) littermates to 14 days of chronic hypoxia combined with SUGEN treatment (HySu) to recapitulate characteristics of clinical PAH. RV structure and function were measured by echocardiography, RV catheterization, and histology. Despite comparable increases in RV systolic pressure (Col1a1+/+: 46 ± 2 mmHg; Col1a1R/R: 47 ± 3 mmHg), the impaired collagen degradation in Col1a1R/R mice resulted in no RV collagen accumulation, limited RV hypertrophy, and maintained right ventricular‐pulmonary vascular coupling with HySu exposure. The preservation of cardiac function in the mutant mice indicates a beneficial role of limited collagen turnover via impaired degradation in RV remodeling in response to chronic pressure overload. Our results suggest novel treatments that reduce collagen turnover may offer a new therapeutic strategy for PAH patients. By the novel use of a mouse model of PAH with impaired collagen degradation, our study shows that the inhibition of collagen turnover attenuates RV collagen accumulation, limits RV hypertrophy, and preserves cardiac function. These findings may lead to targeted clinical treatments to prevent RV dysfunction and failure in PAH.</description><subject>Animals</subject><subject>Blood Pressure</subject><subject>Cardiac energetics</subject><subject>Cardiac function</subject><subject>Cardiovascular Conditions, Disorders and Treatments</subject><subject>Catheterization</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen - genetics</subject><subject>Collagen - metabolism</subject><subject>Collagenase</subject><subject>Collagenases - genetics</subject><subject>Collagenases - metabolism</subject><subject>Coronary vessels</subject><subject>Echocardiography</subject><subject>effective arterial elastance</subject><subject>Efficiency</subject><subject>Fibrosis</subject><subject>Fibrosis - metabolism</subject><subject>Fibrosis - pathology</subject><subject>Fibrosis - physiopathology</subject><subject>Heart</subject><subject>Hypertension</subject><subject>Hypertension, Pulmonary - metabolism</subject><subject>Hypertension, Pulmonary - pathology</subject><subject>Hypertension, Pulmonary - physiopathology</subject><subject>Hypertrophy</subject><subject>Hypotheses</subject><subject>Hypoxia</subject><subject>Intubation</subject><subject>Lung diseases</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Original Research</subject><subject>Physiology</subject><subject>Preservation</subject><subject>pressure‐volume loop</subject><subject>Pulmonary artery</subject><subject>Pulmonary Circulation</subject><subject>Pulmonary hypertension</subject><subject>Respiratory Conditions Disorder and Diseases</subject><subject>Structure-function relationships</subject><subject>Trends</subject><subject>Ventricle</subject><subject>Ventricular Dysfunction, Right - metabolism</subject><subject>Ventricular Dysfunction, Right - pathology</subject><subject>Ventricular Dysfunction, Right - physiopathology</subject><issn>2051-817X</issn><issn>2051-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkkFrFDEUxwdRbKk9eZeAF0G2JpnJJLkIUtQKC3pQ0FN4zbzZTZlJxiSzZW9-hH5GP4nZbl2qBxES8kh-78_Le_-qesroGWsUa15N6y0_Y1wx8aA65lSwhWLy68N78VF1mtIVpZTRuta0eVwdcckFL-u4ulm60WXnV8SGYYAVepLn6MMGI9k4ONxCwp8_biImlzJ4iwRyRj9DxkSiW60z2aDP0dl5gEi6bepnb7MLnoDvSO8uYyipxHkyzcMYPMQtgZgxOhjIejthiX0q_JPqUQ9DwtO786T68u7t5_OLxfLj-w_nb5YL2yghFppa24tW1aphltlWMA1atlK0umltryS2ALVkAKik5aqTZWNHZd3pvpa8Pqle73Wn-XLEzu6qh8FM0Y2lNhPAmT9fvFubVdiYRlPV6J3AizuBGL7PmLIZXbJY2uUxzMkwRVUruBb_gUpdBsM4bwv6_C_0KpR5lE4YzjWtlaCaFerlnrKlrSlif6ibUXPrC7Pzhbn1RaGf3f_qgf3tggLwPXDtBtz-S8t8uvjG96q_AKapyEs</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Golob, Mark J.</creator><creator>Wang, Zhijie</creator><creator>Prostrollo, Anthony J.</creator><creator>Hacker, Timothy A.</creator><creator>Chesler, Naomi C.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201606</creationdate><title>Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension</title><author>Golob, Mark J. ; Wang, Zhijie ; Prostrollo, Anthony J. ; Hacker, Timothy A. ; Chesler, Naomi C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4855-90ccf5683841c1c6519a976756946cf87e6aa371aae87c28d728ded073d9f3723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Blood Pressure</topic><topic>Cardiac energetics</topic><topic>Cardiac function</topic><topic>Cardiovascular Conditions, Disorders and Treatments</topic><topic>Catheterization</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen - genetics</topic><topic>Collagen - metabolism</topic><topic>Collagenase</topic><topic>Collagenases - genetics</topic><topic>Collagenases - metabolism</topic><topic>Coronary vessels</topic><topic>Echocardiography</topic><topic>effective arterial elastance</topic><topic>Efficiency</topic><topic>Fibrosis</topic><topic>Fibrosis - metabolism</topic><topic>Fibrosis - pathology</topic><topic>Fibrosis - physiopathology</topic><topic>Heart</topic><topic>Hypertension</topic><topic>Hypertension, Pulmonary - metabolism</topic><topic>Hypertension, Pulmonary - pathology</topic><topic>Hypertension, Pulmonary - physiopathology</topic><topic>Hypertrophy</topic><topic>Hypotheses</topic><topic>Hypoxia</topic><topic>Intubation</topic><topic>Lung diseases</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Original Research</topic><topic>Physiology</topic><topic>Preservation</topic><topic>pressure‐volume loop</topic><topic>Pulmonary artery</topic><topic>Pulmonary Circulation</topic><topic>Pulmonary hypertension</topic><topic>Respiratory Conditions Disorder and Diseases</topic><topic>Structure-function relationships</topic><topic>Trends</topic><topic>Ventricle</topic><topic>Ventricular Dysfunction, Right - metabolism</topic><topic>Ventricular Dysfunction, Right - pathology</topic><topic>Ventricular Dysfunction, Right - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golob, Mark J.</creatorcontrib><creatorcontrib>Wang, Zhijie</creatorcontrib><creatorcontrib>Prostrollo, Anthony J.</creatorcontrib><creatorcontrib>Hacker, Timothy A.</creatorcontrib><creatorcontrib>Chesler, Naomi C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golob, Mark J.</au><au>Wang, Zhijie</au><au>Prostrollo, Anthony J.</au><au>Hacker, Timothy A.</au><au>Chesler, Naomi C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension</atitle><jtitle>Physiological reports</jtitle><addtitle>Physiol Rep</addtitle><date>2016-06</date><risdate>2016</risdate><volume>4</volume><issue>11</issue><spage>e12815</spage><epage>n/a</epage><pages>e12815-n/a</pages><issn>2051-817X</issn><eissn>2051-817X</eissn><abstract>Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension in which right ventricular (RV) afterload is increased and death typically occurs due to decompensated RV hypertrophy and failure. Collagen accumulation has been implicated in pulmonary artery remodeling, but how it affects RV performance remains unclear. Here, we sought to identify the role of collagen turnover, defined as the balance between collagen synthesis and degradation, in RV structure and function in PAH. To do so, we exposed mutant (Col1a1R/R) mice, in which collagen type I degradation is impaired such that collagen turnover is reduced, and wild‐type (Col1a1+/+) littermates to 14 days of chronic hypoxia combined with SUGEN treatment (HySu) to recapitulate characteristics of clinical PAH. RV structure and function were measured by echocardiography, RV catheterization, and histology. Despite comparable increases in RV systolic pressure (Col1a1+/+: 46 ± 2 mmHg; Col1a1R/R: 47 ± 3 mmHg), the impaired collagen degradation in Col1a1R/R mice resulted in no RV collagen accumulation, limited RV hypertrophy, and maintained right ventricular‐pulmonary vascular coupling with HySu exposure. The preservation of cardiac function in the mutant mice indicates a beneficial role of limited collagen turnover via impaired degradation in RV remodeling in response to chronic pressure overload. Our results suggest novel treatments that reduce collagen turnover may offer a new therapeutic strategy for PAH patients. By the novel use of a mouse model of PAH with impaired collagen degradation, our study shows that the inhibition of collagen turnover attenuates RV collagen accumulation, limits RV hypertrophy, and preserves cardiac function. These findings may lead to targeted clinical treatments to prevent RV dysfunction and failure in PAH.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>27252252</pmid><doi>10.14814/phy2.12815</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-817X
ispartof Physiological reports, 2016-06, Vol.4 (11), p.e12815-n/a
issn 2051-817X
2051-817X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4908492
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Blood Pressure
Cardiac energetics
Cardiac function
Cardiovascular Conditions, Disorders and Treatments
Catheterization
Collagen
Collagen (type I)
Collagen - genetics
Collagen - metabolism
Collagenase
Collagenases - genetics
Collagenases - metabolism
Coronary vessels
Echocardiography
effective arterial elastance
Efficiency
Fibrosis
Fibrosis - metabolism
Fibrosis - pathology
Fibrosis - physiopathology
Heart
Hypertension
Hypertension, Pulmonary - metabolism
Hypertension, Pulmonary - pathology
Hypertension, Pulmonary - physiopathology
Hypertrophy
Hypotheses
Hypoxia
Intubation
Lung diseases
Mice
Mice, Transgenic
Original Research
Physiology
Preservation
pressure‐volume loop
Pulmonary artery
Pulmonary Circulation
Pulmonary hypertension
Respiratory Conditions Disorder and Diseases
Structure-function relationships
Trends
Ventricle
Ventricular Dysfunction, Right - metabolism
Ventricular Dysfunction, Right - pathology
Ventricular Dysfunction, Right - physiopathology
title Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20collagen%20turnover%20via%20collagenase%E2%80%90resistance%20attenuates%20right%20ventricular%20dysfunction%20and%20fibrosis%20in%20pulmonary%20arterial%20hypertension&rft.jtitle=Physiological%20reports&rft.au=Golob,%20Mark%20J.&rft.date=2016-06&rft.volume=4&rft.issue=11&rft.spage=e12815&rft.epage=n/a&rft.pages=e12815-n/a&rft.issn=2051-817X&rft.eissn=2051-817X&rft_id=info:doi/10.14814/phy2.12815&rft_dat=%3Cproquest_pubme%3E1793901226%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290385091&rft_id=info:pmid/27252252&rfr_iscdi=true