Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension in which right ventricular (RV) afterload is increased and death typically occurs due to decompensated RV hypertrophy and failure. Collagen accumulation has been implicated in pulmonary artery remodeling, but how it aff...
Gespeichert in:
Veröffentlicht in: | Physiological reports 2016-06, Vol.4 (11), p.e12815-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | e12815 |
container_title | Physiological reports |
container_volume | 4 |
creator | Golob, Mark J. Wang, Zhijie Prostrollo, Anthony J. Hacker, Timothy A. Chesler, Naomi C. |
description | Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension in which right ventricular (RV) afterload is increased and death typically occurs due to decompensated RV hypertrophy and failure. Collagen accumulation has been implicated in pulmonary artery remodeling, but how it affects RV performance remains unclear. Here, we sought to identify the role of collagen turnover, defined as the balance between collagen synthesis and degradation, in RV structure and function in PAH. To do so, we exposed mutant (Col1a1R/R) mice, in which collagen type I degradation is impaired such that collagen turnover is reduced, and wild‐type (Col1a1+/+) littermates to 14 days of chronic hypoxia combined with SUGEN treatment (HySu) to recapitulate characteristics of clinical PAH. RV structure and function were measured by echocardiography, RV catheterization, and histology. Despite comparable increases in RV systolic pressure (Col1a1+/+: 46 ± 2 mmHg; Col1a1R/R: 47 ± 3 mmHg), the impaired collagen degradation in Col1a1R/R mice resulted in no RV collagen accumulation, limited RV hypertrophy, and maintained right ventricular‐pulmonary vascular coupling with HySu exposure. The preservation of cardiac function in the mutant mice indicates a beneficial role of limited collagen turnover via impaired degradation in RV remodeling in response to chronic pressure overload. Our results suggest novel treatments that reduce collagen turnover may offer a new therapeutic strategy for PAH patients.
By the novel use of a mouse model of PAH with impaired collagen degradation, our study shows that the inhibition of collagen turnover attenuates RV collagen accumulation, limits RV hypertrophy, and preserves cardiac function. These findings may lead to targeted clinical treatments to prevent RV dysfunction and failure in PAH. |
doi_str_mv | 10.14814/phy2.12815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4908492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793901226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4855-90ccf5683841c1c6519a976756946cf87e6aa371aae87c28d728ded073d9f3723</originalsourceid><addsrcrecordid>eNqNkkFrFDEUxwdRbKk9eZeAF0G2JpnJJLkIUtQKC3pQ0FN4zbzZTZlJxiSzZW9-hH5GP4nZbl2qBxES8kh-78_Le_-qesroGWsUa15N6y0_Y1wx8aA65lSwhWLy68N78VF1mtIVpZTRuta0eVwdcckFL-u4ulm60WXnV8SGYYAVepLn6MMGI9k4ONxCwp8_biImlzJ4iwRyRj9DxkSiW60z2aDP0dl5gEi6bepnb7MLnoDvSO8uYyipxHkyzcMYPMQtgZgxOhjIejthiX0q_JPqUQ9DwtO786T68u7t5_OLxfLj-w_nb5YL2yghFppa24tW1aphltlWMA1atlK0umltryS2ALVkAKik5aqTZWNHZd3pvpa8Pqle73Wn-XLEzu6qh8FM0Y2lNhPAmT9fvFubVdiYRlPV6J3AizuBGL7PmLIZXbJY2uUxzMkwRVUruBb_gUpdBsM4bwv6_C_0KpR5lE4YzjWtlaCaFerlnrKlrSlif6ibUXPrC7Pzhbn1RaGf3f_qgf3tggLwPXDtBtz-S8t8uvjG96q_AKapyEs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290385091</pqid></control><display><type>article</type><title>Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Golob, Mark J. ; Wang, Zhijie ; Prostrollo, Anthony J. ; Hacker, Timothy A. ; Chesler, Naomi C.</creator><creatorcontrib>Golob, Mark J. ; Wang, Zhijie ; Prostrollo, Anthony J. ; Hacker, Timothy A. ; Chesler, Naomi C.</creatorcontrib><description>Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension in which right ventricular (RV) afterload is increased and death typically occurs due to decompensated RV hypertrophy and failure. Collagen accumulation has been implicated in pulmonary artery remodeling, but how it affects RV performance remains unclear. Here, we sought to identify the role of collagen turnover, defined as the balance between collagen synthesis and degradation, in RV structure and function in PAH. To do so, we exposed mutant (Col1a1R/R) mice, in which collagen type I degradation is impaired such that collagen turnover is reduced, and wild‐type (Col1a1+/+) littermates to 14 days of chronic hypoxia combined with SUGEN treatment (HySu) to recapitulate characteristics of clinical PAH. RV structure and function were measured by echocardiography, RV catheterization, and histology. Despite comparable increases in RV systolic pressure (Col1a1+/+: 46 ± 2 mmHg; Col1a1R/R: 47 ± 3 mmHg), the impaired collagen degradation in Col1a1R/R mice resulted in no RV collagen accumulation, limited RV hypertrophy, and maintained right ventricular‐pulmonary vascular coupling with HySu exposure. The preservation of cardiac function in the mutant mice indicates a beneficial role of limited collagen turnover via impaired degradation in RV remodeling in response to chronic pressure overload. Our results suggest novel treatments that reduce collagen turnover may offer a new therapeutic strategy for PAH patients.
By the novel use of a mouse model of PAH with impaired collagen degradation, our study shows that the inhibition of collagen turnover attenuates RV collagen accumulation, limits RV hypertrophy, and preserves cardiac function. These findings may lead to targeted clinical treatments to prevent RV dysfunction and failure in PAH.</description><identifier>ISSN: 2051-817X</identifier><identifier>EISSN: 2051-817X</identifier><identifier>DOI: 10.14814/phy2.12815</identifier><identifier>PMID: 27252252</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Animals ; Blood Pressure ; Cardiac energetics ; Cardiac function ; Cardiovascular Conditions, Disorders and Treatments ; Catheterization ; Collagen ; Collagen (type I) ; Collagen - genetics ; Collagen - metabolism ; Collagenase ; Collagenases - genetics ; Collagenases - metabolism ; Coronary vessels ; Echocardiography ; effective arterial elastance ; Efficiency ; Fibrosis ; Fibrosis - metabolism ; Fibrosis - pathology ; Fibrosis - physiopathology ; Heart ; Hypertension ; Hypertension, Pulmonary - metabolism ; Hypertension, Pulmonary - pathology ; Hypertension, Pulmonary - physiopathology ; Hypertrophy ; Hypotheses ; Hypoxia ; Intubation ; Lung diseases ; Mice ; Mice, Transgenic ; Original Research ; Physiology ; Preservation ; pressure‐volume loop ; Pulmonary artery ; Pulmonary Circulation ; Pulmonary hypertension ; Respiratory Conditions Disorder and Diseases ; Structure-function relationships ; Trends ; Ventricle ; Ventricular Dysfunction, Right - metabolism ; Ventricular Dysfunction, Right - pathology ; Ventricular Dysfunction, Right - physiopathology</subject><ispartof>Physiological reports, 2016-06, Vol.4 (11), p.e12815-n/a</ispartof><rights>2016 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.</rights><rights>2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4855-90ccf5683841c1c6519a976756946cf87e6aa371aae87c28d728ded073d9f3723</citedby><cites>FETCH-LOGICAL-c4855-90ccf5683841c1c6519a976756946cf87e6aa371aae87c28d728ded073d9f3723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908492/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908492/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27252252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Golob, Mark J.</creatorcontrib><creatorcontrib>Wang, Zhijie</creatorcontrib><creatorcontrib>Prostrollo, Anthony J.</creatorcontrib><creatorcontrib>Hacker, Timothy A.</creatorcontrib><creatorcontrib>Chesler, Naomi C.</creatorcontrib><title>Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension</title><title>Physiological reports</title><addtitle>Physiol Rep</addtitle><description>Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension in which right ventricular (RV) afterload is increased and death typically occurs due to decompensated RV hypertrophy and failure. Collagen accumulation has been implicated in pulmonary artery remodeling, but how it affects RV performance remains unclear. Here, we sought to identify the role of collagen turnover, defined as the balance between collagen synthesis and degradation, in RV structure and function in PAH. To do so, we exposed mutant (Col1a1R/R) mice, in which collagen type I degradation is impaired such that collagen turnover is reduced, and wild‐type (Col1a1+/+) littermates to 14 days of chronic hypoxia combined with SUGEN treatment (HySu) to recapitulate characteristics of clinical PAH. RV structure and function were measured by echocardiography, RV catheterization, and histology. Despite comparable increases in RV systolic pressure (Col1a1+/+: 46 ± 2 mmHg; Col1a1R/R: 47 ± 3 mmHg), the impaired collagen degradation in Col1a1R/R mice resulted in no RV collagen accumulation, limited RV hypertrophy, and maintained right ventricular‐pulmonary vascular coupling with HySu exposure. The preservation of cardiac function in the mutant mice indicates a beneficial role of limited collagen turnover via impaired degradation in RV remodeling in response to chronic pressure overload. Our results suggest novel treatments that reduce collagen turnover may offer a new therapeutic strategy for PAH patients.
By the novel use of a mouse model of PAH with impaired collagen degradation, our study shows that the inhibition of collagen turnover attenuates RV collagen accumulation, limits RV hypertrophy, and preserves cardiac function. These findings may lead to targeted clinical treatments to prevent RV dysfunction and failure in PAH.</description><subject>Animals</subject><subject>Blood Pressure</subject><subject>Cardiac energetics</subject><subject>Cardiac function</subject><subject>Cardiovascular Conditions, Disorders and Treatments</subject><subject>Catheterization</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen - genetics</subject><subject>Collagen - metabolism</subject><subject>Collagenase</subject><subject>Collagenases - genetics</subject><subject>Collagenases - metabolism</subject><subject>Coronary vessels</subject><subject>Echocardiography</subject><subject>effective arterial elastance</subject><subject>Efficiency</subject><subject>Fibrosis</subject><subject>Fibrosis - metabolism</subject><subject>Fibrosis - pathology</subject><subject>Fibrosis - physiopathology</subject><subject>Heart</subject><subject>Hypertension</subject><subject>Hypertension, Pulmonary - metabolism</subject><subject>Hypertension, Pulmonary - pathology</subject><subject>Hypertension, Pulmonary - physiopathology</subject><subject>Hypertrophy</subject><subject>Hypotheses</subject><subject>Hypoxia</subject><subject>Intubation</subject><subject>Lung diseases</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Original Research</subject><subject>Physiology</subject><subject>Preservation</subject><subject>pressure‐volume loop</subject><subject>Pulmonary artery</subject><subject>Pulmonary Circulation</subject><subject>Pulmonary hypertension</subject><subject>Respiratory Conditions Disorder and Diseases</subject><subject>Structure-function relationships</subject><subject>Trends</subject><subject>Ventricle</subject><subject>Ventricular Dysfunction, Right - metabolism</subject><subject>Ventricular Dysfunction, Right - pathology</subject><subject>Ventricular Dysfunction, Right - physiopathology</subject><issn>2051-817X</issn><issn>2051-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkkFrFDEUxwdRbKk9eZeAF0G2JpnJJLkIUtQKC3pQ0FN4zbzZTZlJxiSzZW9-hH5GP4nZbl2qBxES8kh-78_Le_-qesroGWsUa15N6y0_Y1wx8aA65lSwhWLy68N78VF1mtIVpZTRuta0eVwdcckFL-u4ulm60WXnV8SGYYAVepLn6MMGI9k4ONxCwp8_biImlzJ4iwRyRj9DxkSiW60z2aDP0dl5gEi6bepnb7MLnoDvSO8uYyipxHkyzcMYPMQtgZgxOhjIejthiX0q_JPqUQ9DwtO786T68u7t5_OLxfLj-w_nb5YL2yghFppa24tW1aphltlWMA1atlK0umltryS2ALVkAKik5aqTZWNHZd3pvpa8Pqle73Wn-XLEzu6qh8FM0Y2lNhPAmT9fvFubVdiYRlPV6J3AizuBGL7PmLIZXbJY2uUxzMkwRVUruBb_gUpdBsM4bwv6_C_0KpR5lE4YzjWtlaCaFerlnrKlrSlif6ibUXPrC7Pzhbn1RaGf3f_qgf3tggLwPXDtBtz-S8t8uvjG96q_AKapyEs</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Golob, Mark J.</creator><creator>Wang, Zhijie</creator><creator>Prostrollo, Anthony J.</creator><creator>Hacker, Timothy A.</creator><creator>Chesler, Naomi C.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201606</creationdate><title>Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension</title><author>Golob, Mark J. ; Wang, Zhijie ; Prostrollo, Anthony J. ; Hacker, Timothy A. ; Chesler, Naomi C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4855-90ccf5683841c1c6519a976756946cf87e6aa371aae87c28d728ded073d9f3723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Blood Pressure</topic><topic>Cardiac energetics</topic><topic>Cardiac function</topic><topic>Cardiovascular Conditions, Disorders and Treatments</topic><topic>Catheterization</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen - genetics</topic><topic>Collagen - metabolism</topic><topic>Collagenase</topic><topic>Collagenases - genetics</topic><topic>Collagenases - metabolism</topic><topic>Coronary vessels</topic><topic>Echocardiography</topic><topic>effective arterial elastance</topic><topic>Efficiency</topic><topic>Fibrosis</topic><topic>Fibrosis - metabolism</topic><topic>Fibrosis - pathology</topic><topic>Fibrosis - physiopathology</topic><topic>Heart</topic><topic>Hypertension</topic><topic>Hypertension, Pulmonary - metabolism</topic><topic>Hypertension, Pulmonary - pathology</topic><topic>Hypertension, Pulmonary - physiopathology</topic><topic>Hypertrophy</topic><topic>Hypotheses</topic><topic>Hypoxia</topic><topic>Intubation</topic><topic>Lung diseases</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Original Research</topic><topic>Physiology</topic><topic>Preservation</topic><topic>pressure‐volume loop</topic><topic>Pulmonary artery</topic><topic>Pulmonary Circulation</topic><topic>Pulmonary hypertension</topic><topic>Respiratory Conditions Disorder and Diseases</topic><topic>Structure-function relationships</topic><topic>Trends</topic><topic>Ventricle</topic><topic>Ventricular Dysfunction, Right - metabolism</topic><topic>Ventricular Dysfunction, Right - pathology</topic><topic>Ventricular Dysfunction, Right - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golob, Mark J.</creatorcontrib><creatorcontrib>Wang, Zhijie</creatorcontrib><creatorcontrib>Prostrollo, Anthony J.</creatorcontrib><creatorcontrib>Hacker, Timothy A.</creatorcontrib><creatorcontrib>Chesler, Naomi C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golob, Mark J.</au><au>Wang, Zhijie</au><au>Prostrollo, Anthony J.</au><au>Hacker, Timothy A.</au><au>Chesler, Naomi C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension</atitle><jtitle>Physiological reports</jtitle><addtitle>Physiol Rep</addtitle><date>2016-06</date><risdate>2016</risdate><volume>4</volume><issue>11</issue><spage>e12815</spage><epage>n/a</epage><pages>e12815-n/a</pages><issn>2051-817X</issn><eissn>2051-817X</eissn><abstract>Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension in which right ventricular (RV) afterload is increased and death typically occurs due to decompensated RV hypertrophy and failure. Collagen accumulation has been implicated in pulmonary artery remodeling, but how it affects RV performance remains unclear. Here, we sought to identify the role of collagen turnover, defined as the balance between collagen synthesis and degradation, in RV structure and function in PAH. To do so, we exposed mutant (Col1a1R/R) mice, in which collagen type I degradation is impaired such that collagen turnover is reduced, and wild‐type (Col1a1+/+) littermates to 14 days of chronic hypoxia combined with SUGEN treatment (HySu) to recapitulate characteristics of clinical PAH. RV structure and function were measured by echocardiography, RV catheterization, and histology. Despite comparable increases in RV systolic pressure (Col1a1+/+: 46 ± 2 mmHg; Col1a1R/R: 47 ± 3 mmHg), the impaired collagen degradation in Col1a1R/R mice resulted in no RV collagen accumulation, limited RV hypertrophy, and maintained right ventricular‐pulmonary vascular coupling with HySu exposure. The preservation of cardiac function in the mutant mice indicates a beneficial role of limited collagen turnover via impaired degradation in RV remodeling in response to chronic pressure overload. Our results suggest novel treatments that reduce collagen turnover may offer a new therapeutic strategy for PAH patients.
By the novel use of a mouse model of PAH with impaired collagen degradation, our study shows that the inhibition of collagen turnover attenuates RV collagen accumulation, limits RV hypertrophy, and preserves cardiac function. These findings may lead to targeted clinical treatments to prevent RV dysfunction and failure in PAH.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>27252252</pmid><doi>10.14814/phy2.12815</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-817X |
ispartof | Physiological reports, 2016-06, Vol.4 (11), p.e12815-n/a |
issn | 2051-817X 2051-817X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4908492 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Blood Pressure Cardiac energetics Cardiac function Cardiovascular Conditions, Disorders and Treatments Catheterization Collagen Collagen (type I) Collagen - genetics Collagen - metabolism Collagenase Collagenases - genetics Collagenases - metabolism Coronary vessels Echocardiography effective arterial elastance Efficiency Fibrosis Fibrosis - metabolism Fibrosis - pathology Fibrosis - physiopathology Heart Hypertension Hypertension, Pulmonary - metabolism Hypertension, Pulmonary - pathology Hypertension, Pulmonary - physiopathology Hypertrophy Hypotheses Hypoxia Intubation Lung diseases Mice Mice, Transgenic Original Research Physiology Preservation pressure‐volume loop Pulmonary artery Pulmonary Circulation Pulmonary hypertension Respiratory Conditions Disorder and Diseases Structure-function relationships Trends Ventricle Ventricular Dysfunction, Right - metabolism Ventricular Dysfunction, Right - pathology Ventricular Dysfunction, Right - physiopathology |
title | Limiting collagen turnover via collagenase‐resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20collagen%20turnover%20via%20collagenase%E2%80%90resistance%20attenuates%20right%20ventricular%20dysfunction%20and%20fibrosis%20in%20pulmonary%20arterial%20hypertension&rft.jtitle=Physiological%20reports&rft.au=Golob,%20Mark%20J.&rft.date=2016-06&rft.volume=4&rft.issue=11&rft.spage=e12815&rft.epage=n/a&rft.pages=e12815-n/a&rft.issn=2051-817X&rft.eissn=2051-817X&rft_id=info:doi/10.14814/phy2.12815&rft_dat=%3Cproquest_pubme%3E1793901226%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290385091&rft_id=info:pmid/27252252&rfr_iscdi=true |