Comparative analyses of population-scale phenomic data in electronic medical records reveal race-specific disease networks
Underrepresentation of racial groups represents an important challenge and major gap in phenomics research. Most of the current human phenomics research is based primarily on European populations; hence it is an important challenge to expand it to consider other population groups. One approach is to...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2016-06, Vol.32 (12), p.i101-i110 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | i110 |
---|---|
container_issue | 12 |
container_start_page | i101 |
container_title | Bioinformatics |
container_volume | 32 |
creator | Glicksberg, Benjamin S Li, Li Badgeley, Marcus A Shameer, Khader Kosoy, Roman Beckmann, Noam D Pho, Nam Hakenberg, Jörg Ma, Meng Ayers, Kristin L Hoffman, Gabriel E Dan Li, Shuyu Schadt, Eric E Patel, Chirag J Chen, Rong Dudley, Joel T |
description | Underrepresentation of racial groups represents an important challenge and major gap in phenomics research. Most of the current human phenomics research is based primarily on European populations; hence it is an important challenge to expand it to consider other population groups. One approach is to utilize data from EMR databases that contain patient data from diverse demographics and ancestries. The implications of this racial underrepresentation of data can be profound regarding effects on the healthcare delivery and actionability. To the best of our knowledge, our work is the first attempt to perform comparative, population-scale analyses of disease networks across three different populations, namely Caucasian (EA), African American (AA) and Hispanic/Latino (HL).
We compared susceptibility profiles and temporal connectivity patterns for 1988 diseases and 37 282 disease pairs represented in a clinical population of 1 025 573 patients. Accordingly, we revealed appreciable differences in disease susceptibility, temporal patterns, network structure and underlying disease connections between EA, AA and HL populations. We found 2158 significantly comorbid diseases for the EA cohort, 3265 for AA and 672 for HL. We further outlined key disease pair associations unique to each population as well as categorical enrichments of these pairs. Finally, we identified 51 key 'hub' diseases that are the focal points in the race-centric networks and of particular clinical importance. Incorporating race-specific disease comorbidity patterns will produce a more accurate and complete picture of the disease landscape overall and could support more precise understanding of disease relationships and patient management towards improved clinical outcomes.
rong.chen@mssm.edu or joel.dudley@mssm.edu
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btw282 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4908366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825545854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-8e8ea6a7020b622193c95d5921538e8a0471d78a59c5d768ebf855c40a41339f3</originalsourceid><addsrcrecordid>eNqNkktv1TAQhS1ERUvhJ4C8ZBPqR_zIBgldlYdUqZt2bU2cCTUkdrBzb1V-Pb665YquYDX2zHeOxvIh5A1n7znr5EUfUohjyjOswZeLfr0XVjwjZ1xq07SW8-fHM5On5GUp3xljiin9gpwKI5nRTJ-RX5s0L5CryQ4pRJgeChaaRrqkZTvVdopN8TAhXe4wpjl4OsAKNESKE_o1p1hbMw6hQjSjT3kote5wfwWPTVnQh3GvCwWhII243qf8o7wiJyNMBV8_1nNy--nyZvOlubr-_HXz8arxrTFrY9EiaDBMsF4LwTvpOzWoTnAl6wxYa_hgLKjOq8Foi_1olfItg5ZL2Y3ynHw4-C7bvi7qMa4ZJrfkMEN-cAmCezqJ4c59SzvXdsxKravBu0eDnH5usaxuDsXjNEHEtC2OW6FUq6xq_wNl1ojOKPZv1HTGGqUNr6g6oD6nUjKOx-U5c_s0uKdpcIc0VN3bv19-VP35fvkb7jK5MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797875671</pqid></control><display><type>article</type><title>Comparative analyses of population-scale phenomic data in electronic medical records reveal race-specific disease networks</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Glicksberg, Benjamin S ; Li, Li ; Badgeley, Marcus A ; Shameer, Khader ; Kosoy, Roman ; Beckmann, Noam D ; Pho, Nam ; Hakenberg, Jörg ; Ma, Meng ; Ayers, Kristin L ; Hoffman, Gabriel E ; Dan Li, Shuyu ; Schadt, Eric E ; Patel, Chirag J ; Chen, Rong ; Dudley, Joel T</creator><creatorcontrib>Glicksberg, Benjamin S ; Li, Li ; Badgeley, Marcus A ; Shameer, Khader ; Kosoy, Roman ; Beckmann, Noam D ; Pho, Nam ; Hakenberg, Jörg ; Ma, Meng ; Ayers, Kristin L ; Hoffman, Gabriel E ; Dan Li, Shuyu ; Schadt, Eric E ; Patel, Chirag J ; Chen, Rong ; Dudley, Joel T</creatorcontrib><description>Underrepresentation of racial groups represents an important challenge and major gap in phenomics research. Most of the current human phenomics research is based primarily on European populations; hence it is an important challenge to expand it to consider other population groups. One approach is to utilize data from EMR databases that contain patient data from diverse demographics and ancestries. The implications of this racial underrepresentation of data can be profound regarding effects on the healthcare delivery and actionability. To the best of our knowledge, our work is the first attempt to perform comparative, population-scale analyses of disease networks across three different populations, namely Caucasian (EA), African American (AA) and Hispanic/Latino (HL).
We compared susceptibility profiles and temporal connectivity patterns for 1988 diseases and 37 282 disease pairs represented in a clinical population of 1 025 573 patients. Accordingly, we revealed appreciable differences in disease susceptibility, temporal patterns, network structure and underlying disease connections between EA, AA and HL populations. We found 2158 significantly comorbid diseases for the EA cohort, 3265 for AA and 672 for HL. We further outlined key disease pair associations unique to each population as well as categorical enrichments of these pairs. Finally, we identified 51 key 'hub' diseases that are the focal points in the race-centric networks and of particular clinical importance. Incorporating race-specific disease comorbidity patterns will produce a more accurate and complete picture of the disease landscape overall and could support more precise understanding of disease relationships and patient management towards improved clinical outcomes.
rong.chen@mssm.edu or joel.dudley@mssm.edu
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btw282</identifier><identifier>PMID: 27307606</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>African Americans ; Bioinformatics ; Databases, Factual ; Demographics ; Disease control ; Electronic Health Records ; European Continental Ancestry Group ; Hispanic Americans ; Humans ; Joints ; Landscapes ; Networks ; Patients ; Populations</subject><ispartof>Bioinformatics, 2016-06, Vol.32 (12), p.i101-i110</ispartof><rights>The Author 2016. Published by Oxford University Press.</rights><rights>The Author 2016. Published by Oxford University Press. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-8e8ea6a7020b622193c95d5921538e8a0471d78a59c5d768ebf855c40a41339f3</citedby><cites>FETCH-LOGICAL-c477t-8e8ea6a7020b622193c95d5921538e8a0471d78a59c5d768ebf855c40a41339f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908366/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908366/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27307606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glicksberg, Benjamin S</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Badgeley, Marcus A</creatorcontrib><creatorcontrib>Shameer, Khader</creatorcontrib><creatorcontrib>Kosoy, Roman</creatorcontrib><creatorcontrib>Beckmann, Noam D</creatorcontrib><creatorcontrib>Pho, Nam</creatorcontrib><creatorcontrib>Hakenberg, Jörg</creatorcontrib><creatorcontrib>Ma, Meng</creatorcontrib><creatorcontrib>Ayers, Kristin L</creatorcontrib><creatorcontrib>Hoffman, Gabriel E</creatorcontrib><creatorcontrib>Dan Li, Shuyu</creatorcontrib><creatorcontrib>Schadt, Eric E</creatorcontrib><creatorcontrib>Patel, Chirag J</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Dudley, Joel T</creatorcontrib><title>Comparative analyses of population-scale phenomic data in electronic medical records reveal race-specific disease networks</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Underrepresentation of racial groups represents an important challenge and major gap in phenomics research. Most of the current human phenomics research is based primarily on European populations; hence it is an important challenge to expand it to consider other population groups. One approach is to utilize data from EMR databases that contain patient data from diverse demographics and ancestries. The implications of this racial underrepresentation of data can be profound regarding effects on the healthcare delivery and actionability. To the best of our knowledge, our work is the first attempt to perform comparative, population-scale analyses of disease networks across three different populations, namely Caucasian (EA), African American (AA) and Hispanic/Latino (HL).
We compared susceptibility profiles and temporal connectivity patterns for 1988 diseases and 37 282 disease pairs represented in a clinical population of 1 025 573 patients. Accordingly, we revealed appreciable differences in disease susceptibility, temporal patterns, network structure and underlying disease connections between EA, AA and HL populations. We found 2158 significantly comorbid diseases for the EA cohort, 3265 for AA and 672 for HL. We further outlined key disease pair associations unique to each population as well as categorical enrichments of these pairs. Finally, we identified 51 key 'hub' diseases that are the focal points in the race-centric networks and of particular clinical importance. Incorporating race-specific disease comorbidity patterns will produce a more accurate and complete picture of the disease landscape overall and could support more precise understanding of disease relationships and patient management towards improved clinical outcomes.
rong.chen@mssm.edu or joel.dudley@mssm.edu
Supplementary data are available at Bioinformatics online.</description><subject>African Americans</subject><subject>Bioinformatics</subject><subject>Databases, Factual</subject><subject>Demographics</subject><subject>Disease control</subject><subject>Electronic Health Records</subject><subject>European Continental Ancestry Group</subject><subject>Hispanic Americans</subject><subject>Humans</subject><subject>Joints</subject><subject>Landscapes</subject><subject>Networks</subject><subject>Patients</subject><subject>Populations</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1TAQhS1ERUvhJ4C8ZBPqR_zIBgldlYdUqZt2bU2cCTUkdrBzb1V-Pb665YquYDX2zHeOxvIh5A1n7znr5EUfUohjyjOswZeLfr0XVjwjZ1xq07SW8-fHM5On5GUp3xljiin9gpwKI5nRTJ-RX5s0L5CryQ4pRJgeChaaRrqkZTvVdopN8TAhXe4wpjl4OsAKNESKE_o1p1hbMw6hQjSjT3kote5wfwWPTVnQh3GvCwWhII243qf8o7wiJyNMBV8_1nNy--nyZvOlubr-_HXz8arxrTFrY9EiaDBMsF4LwTvpOzWoTnAl6wxYa_hgLKjOq8Foi_1olfItg5ZL2Y3ynHw4-C7bvi7qMa4ZJrfkMEN-cAmCezqJ4c59SzvXdsxKravBu0eDnH5usaxuDsXjNEHEtC2OW6FUq6xq_wNl1ojOKPZv1HTGGqUNr6g6oD6nUjKOx-U5c_s0uKdpcIc0VN3bv19-VP35fvkb7jK5MA</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Glicksberg, Benjamin S</creator><creator>Li, Li</creator><creator>Badgeley, Marcus A</creator><creator>Shameer, Khader</creator><creator>Kosoy, Roman</creator><creator>Beckmann, Noam D</creator><creator>Pho, Nam</creator><creator>Hakenberg, Jörg</creator><creator>Ma, Meng</creator><creator>Ayers, Kristin L</creator><creator>Hoffman, Gabriel E</creator><creator>Dan Li, Shuyu</creator><creator>Schadt, Eric E</creator><creator>Patel, Chirag J</creator><creator>Chen, Rong</creator><creator>Dudley, Joel T</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20160615</creationdate><title>Comparative analyses of population-scale phenomic data in electronic medical records reveal race-specific disease networks</title><author>Glicksberg, Benjamin S ; Li, Li ; Badgeley, Marcus A ; Shameer, Khader ; Kosoy, Roman ; Beckmann, Noam D ; Pho, Nam ; Hakenberg, Jörg ; Ma, Meng ; Ayers, Kristin L ; Hoffman, Gabriel E ; Dan Li, Shuyu ; Schadt, Eric E ; Patel, Chirag J ; Chen, Rong ; Dudley, Joel T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-8e8ea6a7020b622193c95d5921538e8a0471d78a59c5d768ebf855c40a41339f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>African Americans</topic><topic>Bioinformatics</topic><topic>Databases, Factual</topic><topic>Demographics</topic><topic>Disease control</topic><topic>Electronic Health Records</topic><topic>European Continental Ancestry Group</topic><topic>Hispanic Americans</topic><topic>Humans</topic><topic>Joints</topic><topic>Landscapes</topic><topic>Networks</topic><topic>Patients</topic><topic>Populations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glicksberg, Benjamin S</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Badgeley, Marcus A</creatorcontrib><creatorcontrib>Shameer, Khader</creatorcontrib><creatorcontrib>Kosoy, Roman</creatorcontrib><creatorcontrib>Beckmann, Noam D</creatorcontrib><creatorcontrib>Pho, Nam</creatorcontrib><creatorcontrib>Hakenberg, Jörg</creatorcontrib><creatorcontrib>Ma, Meng</creatorcontrib><creatorcontrib>Ayers, Kristin L</creatorcontrib><creatorcontrib>Hoffman, Gabriel E</creatorcontrib><creatorcontrib>Dan Li, Shuyu</creatorcontrib><creatorcontrib>Schadt, Eric E</creatorcontrib><creatorcontrib>Patel, Chirag J</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Dudley, Joel T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glicksberg, Benjamin S</au><au>Li, Li</au><au>Badgeley, Marcus A</au><au>Shameer, Khader</au><au>Kosoy, Roman</au><au>Beckmann, Noam D</au><au>Pho, Nam</au><au>Hakenberg, Jörg</au><au>Ma, Meng</au><au>Ayers, Kristin L</au><au>Hoffman, Gabriel E</au><au>Dan Li, Shuyu</au><au>Schadt, Eric E</au><au>Patel, Chirag J</au><au>Chen, Rong</au><au>Dudley, Joel T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analyses of population-scale phenomic data in electronic medical records reveal race-specific disease networks</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2016-06-15</date><risdate>2016</risdate><volume>32</volume><issue>12</issue><spage>i101</spage><epage>i110</epage><pages>i101-i110</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>Underrepresentation of racial groups represents an important challenge and major gap in phenomics research. Most of the current human phenomics research is based primarily on European populations; hence it is an important challenge to expand it to consider other population groups. One approach is to utilize data from EMR databases that contain patient data from diverse demographics and ancestries. The implications of this racial underrepresentation of data can be profound regarding effects on the healthcare delivery and actionability. To the best of our knowledge, our work is the first attempt to perform comparative, population-scale analyses of disease networks across three different populations, namely Caucasian (EA), African American (AA) and Hispanic/Latino (HL).
We compared susceptibility profiles and temporal connectivity patterns for 1988 diseases and 37 282 disease pairs represented in a clinical population of 1 025 573 patients. Accordingly, we revealed appreciable differences in disease susceptibility, temporal patterns, network structure and underlying disease connections between EA, AA and HL populations. We found 2158 significantly comorbid diseases for the EA cohort, 3265 for AA and 672 for HL. We further outlined key disease pair associations unique to each population as well as categorical enrichments of these pairs. Finally, we identified 51 key 'hub' diseases that are the focal points in the race-centric networks and of particular clinical importance. Incorporating race-specific disease comorbidity patterns will produce a more accurate and complete picture of the disease landscape overall and could support more precise understanding of disease relationships and patient management towards improved clinical outcomes.
rong.chen@mssm.edu or joel.dudley@mssm.edu
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27307606</pmid><doi>10.1093/bioinformatics/btw282</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2016-06, Vol.32 (12), p.i101-i110 |
issn | 1367-4803 1367-4811 1460-2059 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4908366 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | African Americans Bioinformatics Databases, Factual Demographics Disease control Electronic Health Records European Continental Ancestry Group Hispanic Americans Humans Joints Landscapes Networks Patients Populations |
title | Comparative analyses of population-scale phenomic data in electronic medical records reveal race-specific disease networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analyses%20of%20population-scale%20phenomic%20data%20in%20electronic%20medical%20records%20reveal%20race-specific%20disease%20networks&rft.jtitle=Bioinformatics&rft.au=Glicksberg,%20Benjamin%20S&rft.date=2016-06-15&rft.volume=32&rft.issue=12&rft.spage=i101&rft.epage=i110&rft.pages=i101-i110&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btw282&rft_dat=%3Cproquest_pubme%3E1825545854%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797875671&rft_id=info:pmid/27307606&rfr_iscdi=true |