Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine

Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2016-06, Vol.17 (1), p.455-455, Article 455
Hauptverfasser: Zhu, Zhou, Ihle, Nathan T, Rejto, Paul A, Zarrinkar, Patrick P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 1
container_start_page 455
container_title BMC genomics
container_volume 17
creator Zhu, Zhou
Ihle, Nathan T
Rejto, Paul A
Zarrinkar, Patrick P
description Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency. Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles. The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.
doi_str_mv 10.1186/s12864-016-2807-y
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4907009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A468878463</galeid><sourcerecordid>A468878463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-b823ddc3059c153c758e18bf669922cfda1a516e4eb00a1bd341489ea6d8d4543</originalsourceid><addsrcrecordid>eNptkl1rFTEQhhdRbK3-AG9kwRu92JrJZvNxI5TSaqFQ8OM6ZLOz25Sc5Jjsiuffm-XU2iOSiwzJ874DM29VvQZyCiD5hwxUctYQ4A2VRDS7J9UxMAENBc6ePqqPqhc53xECQtLueXVEBVWcKnJc-Ztl9g5TbYLxu-xyHcd6XIKdXSwv9YQhbpyttymOzmOuMSRnb0sxxlTHYKOP066eTZpwzsVlKITpV3Kb0LpcbOoNDs66gC-rZ6PxGV_d3yfV98uLb-efm-ubT1fnZ9eN7RSbm17SdhhsSzploWut6CSC7EfOlaLUjoMB0wFHhj0hBvqhZcCkQsMHObCOtSfVx73vdulLb4thTsbrbXIbk3Y6GqcPf4K71VP8qZkighBVDN7dG6T4Y8E8643LFr03AeOSNQglaGkEtKBv_0Hv4pLK6AolyWpHOvGXmoxH7cIYS1-7muozxqUUkvG2UKf_ocoZsOwgBlxXcCh4fyAozIy_5sksOeurr18OWdizNsWcE44P8wCi1zjpfZx0iZNe46R3RfPm8SAfFH_y0_4Gr7zGUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800700057</pqid></control><display><type>article</type><title>Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Zhu, Zhou ; Ihle, Nathan T ; Rejto, Paul A ; Zarrinkar, Patrick P</creator><creatorcontrib>Zhu, Zhou ; Ihle, Nathan T ; Rejto, Paul A ; Zarrinkar, Patrick P</creatorcontrib><description>Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency. Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles. The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-016-2807-y</identifier><identifier>PMID: 27296290</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Biology ; Biomarkers, Tumor ; Cancer ; Cell Line, Tumor ; Cell lines ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - metabolism ; Clustering ; Computational Biology - methods ; Data mining ; Drug Discovery ; Gene expression ; Gene Expression Profiling ; Genome, Human ; Genomes ; Genomics ; Genomics - methods ; High-Throughput Nucleotide Sequencing ; Humans ; Methods ; Molecular Targeted Therapy ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - metabolism ; Oncology ; Pattern recognition ; Precision Medicine - methods ; Signal Transduction - drug effects ; Tumors</subject><ispartof>BMC genomics, 2016-06, Vol.17 (1), p.455-455, Article 455</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>The Author(s). 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-b823ddc3059c153c758e18bf669922cfda1a516e4eb00a1bd341489ea6d8d4543</citedby><cites>FETCH-LOGICAL-c594t-b823ddc3059c153c758e18bf669922cfda1a516e4eb00a1bd341489ea6d8d4543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907009/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907009/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27296290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Zhou</creatorcontrib><creatorcontrib>Ihle, Nathan T</creatorcontrib><creatorcontrib>Rejto, Paul A</creatorcontrib><creatorcontrib>Zarrinkar, Patrick P</creatorcontrib><title>Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency. Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles. The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.</description><subject>Algorithms</subject><subject>Biology</subject><subject>Biomarkers, Tumor</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - metabolism</subject><subject>Clustering</subject><subject>Computational Biology - methods</subject><subject>Data mining</subject><subject>Drug Discovery</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Methods</subject><subject>Molecular Targeted Therapy</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Oncology</subject><subject>Pattern recognition</subject><subject>Precision Medicine - methods</subject><subject>Signal Transduction - drug effects</subject><subject>Tumors</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkl1rFTEQhhdRbK3-AG9kwRu92JrJZvNxI5TSaqFQ8OM6ZLOz25Sc5Jjsiuffm-XU2iOSiwzJ874DM29VvQZyCiD5hwxUctYQ4A2VRDS7J9UxMAENBc6ePqqPqhc53xECQtLueXVEBVWcKnJc-Ztl9g5TbYLxu-xyHcd6XIKdXSwv9YQhbpyttymOzmOuMSRnb0sxxlTHYKOP066eTZpwzsVlKITpV3Kb0LpcbOoNDs66gC-rZ6PxGV_d3yfV98uLb-efm-ubT1fnZ9eN7RSbm17SdhhsSzploWut6CSC7EfOlaLUjoMB0wFHhj0hBvqhZcCkQsMHObCOtSfVx73vdulLb4thTsbrbXIbk3Y6GqcPf4K71VP8qZkighBVDN7dG6T4Y8E8643LFr03AeOSNQglaGkEtKBv_0Hv4pLK6AolyWpHOvGXmoxH7cIYS1-7muozxqUUkvG2UKf_ocoZsOwgBlxXcCh4fyAozIy_5sksOeurr18OWdizNsWcE44P8wCi1zjpfZx0iZNe46R3RfPm8SAfFH_y0_4Gr7zGUQ</recordid><startdate>20160613</startdate><enddate>20160613</enddate><creator>Zhu, Zhou</creator><creator>Ihle, Nathan T</creator><creator>Rejto, Paul A</creator><creator>Zarrinkar, Patrick P</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160613</creationdate><title>Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine</title><author>Zhu, Zhou ; Ihle, Nathan T ; Rejto, Paul A ; Zarrinkar, Patrick P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-b823ddc3059c153c758e18bf669922cfda1a516e4eb00a1bd341489ea6d8d4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biology</topic><topic>Biomarkers, Tumor</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - metabolism</topic><topic>Clustering</topic><topic>Computational Biology - methods</topic><topic>Data mining</topic><topic>Drug Discovery</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Methods</topic><topic>Molecular Targeted Therapy</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Oncology</topic><topic>Pattern recognition</topic><topic>Precision Medicine - methods</topic><topic>Signal Transduction - drug effects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhou</creatorcontrib><creatorcontrib>Ihle, Nathan T</creatorcontrib><creatorcontrib>Rejto, Paul A</creatorcontrib><creatorcontrib>Zarrinkar, Patrick P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhou</au><au>Ihle, Nathan T</au><au>Rejto, Paul A</au><au>Zarrinkar, Patrick P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2016-06-13</date><risdate>2016</risdate><volume>17</volume><issue>1</issue><spage>455</spage><epage>455</epage><pages>455-455</pages><artnum>455</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency. Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles. The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27296290</pmid><doi>10.1186/s12864-016-2807-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2016-06, Vol.17 (1), p.455-455, Article 455
issn 1471-2164
1471-2164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4907009
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Algorithms
Biology
Biomarkers, Tumor
Cancer
Cell Line, Tumor
Cell lines
Cell Transformation, Neoplastic - genetics
Cell Transformation, Neoplastic - metabolism
Clustering
Computational Biology - methods
Data mining
Drug Discovery
Gene expression
Gene Expression Profiling
Genome, Human
Genomes
Genomics
Genomics - methods
High-Throughput Nucleotide Sequencing
Humans
Methods
Molecular Targeted Therapy
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Oncology
Pattern recognition
Precision Medicine - methods
Signal Transduction - drug effects
Tumors
title Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outlier%20analysis%20of%20functional%20genomic%20profiles%20enriches%20for%20oncology%20targets%20and%20enables%20precision%20medicine&rft.jtitle=BMC%20genomics&rft.au=Zhu,%20Zhou&rft.date=2016-06-13&rft.volume=17&rft.issue=1&rft.spage=455&rft.epage=455&rft.pages=455-455&rft.artnum=455&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-016-2807-y&rft_dat=%3Cgale_pubme%3EA468878463%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800700057&rft_id=info:pmid/27296290&rft_galeid=A468878463&rfr_iscdi=true