Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine
Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various...
Gespeichert in:
Veröffentlicht in: | BMC genomics 2016-06, Vol.17 (1), p.455-455, Article 455 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 1 |
container_start_page | 455 |
container_title | BMC genomics |
container_volume | 17 |
creator | Zhu, Zhou Ihle, Nathan T Rejto, Paul A Zarrinkar, Patrick P |
description | Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency.
Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles.
The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries. |
doi_str_mv | 10.1186/s12864-016-2807-y |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4907009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A468878463</galeid><sourcerecordid>A468878463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-b823ddc3059c153c758e18bf669922cfda1a516e4eb00a1bd341489ea6d8d4543</originalsourceid><addsrcrecordid>eNptkl1rFTEQhhdRbK3-AG9kwRu92JrJZvNxI5TSaqFQ8OM6ZLOz25Sc5Jjsiuffm-XU2iOSiwzJ874DM29VvQZyCiD5hwxUctYQ4A2VRDS7J9UxMAENBc6ePqqPqhc53xECQtLueXVEBVWcKnJc-Ztl9g5TbYLxu-xyHcd6XIKdXSwv9YQhbpyttymOzmOuMSRnb0sxxlTHYKOP066eTZpwzsVlKITpV3Kb0LpcbOoNDs66gC-rZ6PxGV_d3yfV98uLb-efm-ubT1fnZ9eN7RSbm17SdhhsSzploWut6CSC7EfOlaLUjoMB0wFHhj0hBvqhZcCkQsMHObCOtSfVx73vdulLb4thTsbrbXIbk3Y6GqcPf4K71VP8qZkighBVDN7dG6T4Y8E8643LFr03AeOSNQglaGkEtKBv_0Hv4pLK6AolyWpHOvGXmoxH7cIYS1-7muozxqUUkvG2UKf_ocoZsOwgBlxXcCh4fyAozIy_5sksOeurr18OWdizNsWcE44P8wCi1zjpfZx0iZNe46R3RfPm8SAfFH_y0_4Gr7zGUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800700057</pqid></control><display><type>article</type><title>Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Zhu, Zhou ; Ihle, Nathan T ; Rejto, Paul A ; Zarrinkar, Patrick P</creator><creatorcontrib>Zhu, Zhou ; Ihle, Nathan T ; Rejto, Paul A ; Zarrinkar, Patrick P</creatorcontrib><description>Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency.
Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles.
The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-016-2807-y</identifier><identifier>PMID: 27296290</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Biology ; Biomarkers, Tumor ; Cancer ; Cell Line, Tumor ; Cell lines ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - metabolism ; Clustering ; Computational Biology - methods ; Data mining ; Drug Discovery ; Gene expression ; Gene Expression Profiling ; Genome, Human ; Genomes ; Genomics ; Genomics - methods ; High-Throughput Nucleotide Sequencing ; Humans ; Methods ; Molecular Targeted Therapy ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - metabolism ; Oncology ; Pattern recognition ; Precision Medicine - methods ; Signal Transduction - drug effects ; Tumors</subject><ispartof>BMC genomics, 2016-06, Vol.17 (1), p.455-455, Article 455</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>The Author(s). 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-b823ddc3059c153c758e18bf669922cfda1a516e4eb00a1bd341489ea6d8d4543</citedby><cites>FETCH-LOGICAL-c594t-b823ddc3059c153c758e18bf669922cfda1a516e4eb00a1bd341489ea6d8d4543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907009/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907009/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27296290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Zhou</creatorcontrib><creatorcontrib>Ihle, Nathan T</creatorcontrib><creatorcontrib>Rejto, Paul A</creatorcontrib><creatorcontrib>Zarrinkar, Patrick P</creatorcontrib><title>Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency.
Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles.
The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.</description><subject>Algorithms</subject><subject>Biology</subject><subject>Biomarkers, Tumor</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - metabolism</subject><subject>Clustering</subject><subject>Computational Biology - methods</subject><subject>Data mining</subject><subject>Drug Discovery</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Methods</subject><subject>Molecular Targeted Therapy</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Oncology</subject><subject>Pattern recognition</subject><subject>Precision Medicine - methods</subject><subject>Signal Transduction - drug effects</subject><subject>Tumors</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkl1rFTEQhhdRbK3-AG9kwRu92JrJZvNxI5TSaqFQ8OM6ZLOz25Sc5Jjsiuffm-XU2iOSiwzJ874DM29VvQZyCiD5hwxUctYQ4A2VRDS7J9UxMAENBc6ePqqPqhc53xECQtLueXVEBVWcKnJc-Ztl9g5TbYLxu-xyHcd6XIKdXSwv9YQhbpyttymOzmOuMSRnb0sxxlTHYKOP066eTZpwzsVlKITpV3Kb0LpcbOoNDs66gC-rZ6PxGV_d3yfV98uLb-efm-ubT1fnZ9eN7RSbm17SdhhsSzploWut6CSC7EfOlaLUjoMB0wFHhj0hBvqhZcCkQsMHObCOtSfVx73vdulLb4thTsbrbXIbk3Y6GqcPf4K71VP8qZkighBVDN7dG6T4Y8E8643LFr03AeOSNQglaGkEtKBv_0Hv4pLK6AolyWpHOvGXmoxH7cIYS1-7muozxqUUkvG2UKf_ocoZsOwgBlxXcCh4fyAozIy_5sksOeurr18OWdizNsWcE44P8wCi1zjpfZx0iZNe46R3RfPm8SAfFH_y0_4Gr7zGUQ</recordid><startdate>20160613</startdate><enddate>20160613</enddate><creator>Zhu, Zhou</creator><creator>Ihle, Nathan T</creator><creator>Rejto, Paul A</creator><creator>Zarrinkar, Patrick P</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160613</creationdate><title>Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine</title><author>Zhu, Zhou ; Ihle, Nathan T ; Rejto, Paul A ; Zarrinkar, Patrick P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-b823ddc3059c153c758e18bf669922cfda1a516e4eb00a1bd341489ea6d8d4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biology</topic><topic>Biomarkers, Tumor</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - metabolism</topic><topic>Clustering</topic><topic>Computational Biology - methods</topic><topic>Data mining</topic><topic>Drug Discovery</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Methods</topic><topic>Molecular Targeted Therapy</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Oncology</topic><topic>Pattern recognition</topic><topic>Precision Medicine - methods</topic><topic>Signal Transduction - drug effects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhou</creatorcontrib><creatorcontrib>Ihle, Nathan T</creatorcontrib><creatorcontrib>Rejto, Paul A</creatorcontrib><creatorcontrib>Zarrinkar, Patrick P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhou</au><au>Ihle, Nathan T</au><au>Rejto, Paul A</au><au>Zarrinkar, Patrick P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2016-06-13</date><risdate>2016</risdate><volume>17</volume><issue>1</issue><spage>455</spage><epage>455</epage><pages>455-455</pages><artnum>455</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency.
Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles.
The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27296290</pmid><doi>10.1186/s12864-016-2807-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2016-06, Vol.17 (1), p.455-455, Article 455 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4907009 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | Algorithms Biology Biomarkers, Tumor Cancer Cell Line, Tumor Cell lines Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - metabolism Clustering Computational Biology - methods Data mining Drug Discovery Gene expression Gene Expression Profiling Genome, Human Genomes Genomics Genomics - methods High-Throughput Nucleotide Sequencing Humans Methods Molecular Targeted Therapy Neoplasms - drug therapy Neoplasms - genetics Neoplasms - metabolism Oncology Pattern recognition Precision Medicine - methods Signal Transduction - drug effects Tumors |
title | Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outlier%20analysis%20of%20functional%20genomic%20profiles%20enriches%20for%20oncology%20targets%20and%20enables%20precision%20medicine&rft.jtitle=BMC%20genomics&rft.au=Zhu,%20Zhou&rft.date=2016-06-13&rft.volume=17&rft.issue=1&rft.spage=455&rft.epage=455&rft.pages=455-455&rft.artnum=455&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-016-2807-y&rft_dat=%3Cgale_pubme%3EA468878463%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800700057&rft_id=info:pmid/27296290&rft_galeid=A468878463&rfr_iscdi=true |