Antimicrobial Resistance Prediction in PATRIC and RAST
The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathog...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-06, Vol.6 (1), p.27930-27930, Article 27930 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27930 |
---|---|
container_issue | 1 |
container_start_page | 27930 |
container_title | Scientific reports |
container_volume | 6 |
creator | Davis, James J. Boisvert, Sébastien Brettin, Thomas Kenyon, Ronald W. Mao, Chunhong Olson, Robert Overbeek, Ross Santerre, John Shukla, Maulik Wattam, Alice R. Will, Rebecca Xia, Fangfang Stevens, Rick |
description | The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (
http://patricbrc.org/
), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in
Acinetobacter baumannii
, methicillin resistance in
Staphylococcus aureus
, and beta-lactam and co-trimoxazole resistance in
Streptococcus pneumoniae
with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in
Mycobacterium tuberculosis
, achieving accuracies ranging from 71–88%. This set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services. |
doi_str_mv | 10.1038/srep27930 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4906388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4095137681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-6c4f8dbbb7da46234614acbda3413e7300a67a086f9560ef62f9187d8f626bc93</originalsourceid><addsrcrecordid>eNplkVtrGzEQhUVJqYPjh_6BsiQvScGpbqvLS8CYpjUEYlz3WWi12kRmLTmSHMi_r4xd46Z60cB8nDMzB4DPCN4iSMS3FO0Gc0ngB3COIa3HmGB8dlIPwCilFSyvxpIi-QkMMMeSM0HOAZv47NbOxNA43VcLm1zK2htbzaNtncku-Mr5aj5ZLmbTSvu2Wkx-LS_Ax073yY4O_xD8vv--nP4cPzz-mE0nD2NDWZ3HzNBOtE3T8FZThglliGrTtJpQRCwnEGrGNRSskzWDtmO4k0jwVpSKNUaSIbjb6262zdq2xvocda820a11fFNBO_Vvx7tn9RReFZWQESGKwOVeIKTsVDIuW_NsgvfWZIVwLVi9c7k-uMTwsrUpq7VLxva99jZsk0JcclxTgXBBr96hq7CNvtxgRwmMSVmqUDd7qtw1lYC648QIql1q6phaYb-crngk_2ZUgK97IJWWf7LxxPI_tT_ixZ6W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798223300</pqid></control><display><type>article</type><title>Antimicrobial Resistance Prediction in PATRIC and RAST</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Davis, James J. ; Boisvert, Sébastien ; Brettin, Thomas ; Kenyon, Ronald W. ; Mao, Chunhong ; Olson, Robert ; Overbeek, Ross ; Santerre, John ; Shukla, Maulik ; Wattam, Alice R. ; Will, Rebecca ; Xia, Fangfang ; Stevens, Rick</creator><creatorcontrib>Davis, James J. ; Boisvert, Sébastien ; Brettin, Thomas ; Kenyon, Ronald W. ; Mao, Chunhong ; Olson, Robert ; Overbeek, Ross ; Santerre, John ; Shukla, Maulik ; Wattam, Alice R. ; Will, Rebecca ; Xia, Fangfang ; Stevens, Rick ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (
http://patricbrc.org/
), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in
Acinetobacter baumannii
, methicillin resistance in
Staphylococcus aureus
, and beta-lactam and co-trimoxazole resistance in
Streptococcus pneumoniae
with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in
Mycobacterium tuberculosis
, achieving accuracies ranging from 71–88%. This set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep27930</identifier><identifier>PMID: 27297683</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/114/129/2043 ; 631/114/1305 ; adaptive boosting ; Algorithms ; Anti-Bacterial Agents - therapeutic use ; Antibiotic resistance ; Antibiotics ; Antimicrobial agents ; Bacterial Infections - drug therapy ; BASIC BIOLOGICAL SCIENCES ; Clinical Decision-Making ; Computational Biology ; computational biology and bioinformatics ; Data Curation ; Databases, Genetic ; Drug resistance ; Drug Resistance, Microbial - genetics ; Genes ; genetic databases ; genome annotation ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Genotype & phenotype ; Global health ; Humanities and Social Sciences ; Humans ; Machine Learning ; Medical research ; Metadata ; Microbial Sensitivity Tests ; Molecular Sequence Annotation ; multidisciplinary ; National Institutes of Health (U.S.) ; Pathogens ; Prognosis ; random forest ; Science ; Streptococcus infections ; support vector machines ; United States</subject><ispartof>Scientific reports, 2016-06, Vol.6 (1), p.27930-27930, Article 27930</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-6c4f8dbbb7da46234614acbda3413e7300a67a086f9560ef62f9187d8f626bc93</citedby><cites>FETCH-LOGICAL-c465t-6c4f8dbbb7da46234614acbda3413e7300a67a086f9560ef62f9187d8f626bc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906388/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27297683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1258659$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, James J.</creatorcontrib><creatorcontrib>Boisvert, Sébastien</creatorcontrib><creatorcontrib>Brettin, Thomas</creatorcontrib><creatorcontrib>Kenyon, Ronald W.</creatorcontrib><creatorcontrib>Mao, Chunhong</creatorcontrib><creatorcontrib>Olson, Robert</creatorcontrib><creatorcontrib>Overbeek, Ross</creatorcontrib><creatorcontrib>Santerre, John</creatorcontrib><creatorcontrib>Shukla, Maulik</creatorcontrib><creatorcontrib>Wattam, Alice R.</creatorcontrib><creatorcontrib>Will, Rebecca</creatorcontrib><creatorcontrib>Xia, Fangfang</creatorcontrib><creatorcontrib>Stevens, Rick</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Antimicrobial Resistance Prediction in PATRIC and RAST</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (
http://patricbrc.org/
), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in
Acinetobacter baumannii
, methicillin resistance in
Staphylococcus aureus
, and beta-lactam and co-trimoxazole resistance in
Streptococcus pneumoniae
with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in
Mycobacterium tuberculosis
, achieving accuracies ranging from 71–88%. This set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.</description><subject>631/114</subject><subject>631/114/129/2043</subject><subject>631/114/1305</subject><subject>adaptive boosting</subject><subject>Algorithms</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antimicrobial agents</subject><subject>Bacterial Infections - drug therapy</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Clinical Decision-Making</subject><subject>Computational Biology</subject><subject>computational biology and bioinformatics</subject><subject>Data Curation</subject><subject>Databases, Genetic</subject><subject>Drug resistance</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Genes</subject><subject>genetic databases</subject><subject>genome annotation</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Global health</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Medical research</subject><subject>Metadata</subject><subject>Microbial Sensitivity Tests</subject><subject>Molecular Sequence Annotation</subject><subject>multidisciplinary</subject><subject>National Institutes of Health (U.S.)</subject><subject>Pathogens</subject><subject>Prognosis</subject><subject>random forest</subject><subject>Science</subject><subject>Streptococcus infections</subject><subject>support vector machines</subject><subject>United States</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkVtrGzEQhUVJqYPjh_6BsiQvScGpbqvLS8CYpjUEYlz3WWi12kRmLTmSHMi_r4xd46Z60cB8nDMzB4DPCN4iSMS3FO0Gc0ngB3COIa3HmGB8dlIPwCilFSyvxpIi-QkMMMeSM0HOAZv47NbOxNA43VcLm1zK2htbzaNtncku-Mr5aj5ZLmbTSvu2Wkx-LS_Ax073yY4O_xD8vv--nP4cPzz-mE0nD2NDWZ3HzNBOtE3T8FZThglliGrTtJpQRCwnEGrGNRSskzWDtmO4k0jwVpSKNUaSIbjb6262zdq2xvocda820a11fFNBO_Vvx7tn9RReFZWQESGKwOVeIKTsVDIuW_NsgvfWZIVwLVi9c7k-uMTwsrUpq7VLxva99jZsk0JcclxTgXBBr96hq7CNvtxgRwmMSVmqUDd7qtw1lYC648QIql1q6phaYb-crngk_2ZUgK97IJWWf7LxxPI_tT_ixZ6W</recordid><startdate>20160614</startdate><enddate>20160614</enddate><creator>Davis, James J.</creator><creator>Boisvert, Sébastien</creator><creator>Brettin, Thomas</creator><creator>Kenyon, Ronald W.</creator><creator>Mao, Chunhong</creator><creator>Olson, Robert</creator><creator>Overbeek, Ross</creator><creator>Santerre, John</creator><creator>Shukla, Maulik</creator><creator>Wattam, Alice R.</creator><creator>Will, Rebecca</creator><creator>Xia, Fangfang</creator><creator>Stevens, Rick</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160614</creationdate><title>Antimicrobial Resistance Prediction in PATRIC and RAST</title><author>Davis, James J. ; Boisvert, Sébastien ; Brettin, Thomas ; Kenyon, Ronald W. ; Mao, Chunhong ; Olson, Robert ; Overbeek, Ross ; Santerre, John ; Shukla, Maulik ; Wattam, Alice R. ; Will, Rebecca ; Xia, Fangfang ; Stevens, Rick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-6c4f8dbbb7da46234614acbda3413e7300a67a086f9560ef62f9187d8f626bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/114</topic><topic>631/114/129/2043</topic><topic>631/114/1305</topic><topic>adaptive boosting</topic><topic>Algorithms</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antimicrobial agents</topic><topic>Bacterial Infections - drug therapy</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Clinical Decision-Making</topic><topic>Computational Biology</topic><topic>computational biology and bioinformatics</topic><topic>Data Curation</topic><topic>Databases, Genetic</topic><topic>Drug resistance</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Genes</topic><topic>genetic databases</topic><topic>genome annotation</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Global health</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Medical research</topic><topic>Metadata</topic><topic>Microbial Sensitivity Tests</topic><topic>Molecular Sequence Annotation</topic><topic>multidisciplinary</topic><topic>National Institutes of Health (U.S.)</topic><topic>Pathogens</topic><topic>Prognosis</topic><topic>random forest</topic><topic>Science</topic><topic>Streptococcus infections</topic><topic>support vector machines</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, James J.</creatorcontrib><creatorcontrib>Boisvert, Sébastien</creatorcontrib><creatorcontrib>Brettin, Thomas</creatorcontrib><creatorcontrib>Kenyon, Ronald W.</creatorcontrib><creatorcontrib>Mao, Chunhong</creatorcontrib><creatorcontrib>Olson, Robert</creatorcontrib><creatorcontrib>Overbeek, Ross</creatorcontrib><creatorcontrib>Santerre, John</creatorcontrib><creatorcontrib>Shukla, Maulik</creatorcontrib><creatorcontrib>Wattam, Alice R.</creatorcontrib><creatorcontrib>Will, Rebecca</creatorcontrib><creatorcontrib>Xia, Fangfang</creatorcontrib><creatorcontrib>Stevens, Rick</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, James J.</au><au>Boisvert, Sébastien</au><au>Brettin, Thomas</au><au>Kenyon, Ronald W.</au><au>Mao, Chunhong</au><au>Olson, Robert</au><au>Overbeek, Ross</au><au>Santerre, John</au><au>Shukla, Maulik</au><au>Wattam, Alice R.</au><au>Will, Rebecca</au><au>Xia, Fangfang</au><au>Stevens, Rick</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimicrobial Resistance Prediction in PATRIC and RAST</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-06-14</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>27930</spage><epage>27930</epage><pages>27930-27930</pages><artnum>27930</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (
http://patricbrc.org/
), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in
Acinetobacter baumannii
, methicillin resistance in
Staphylococcus aureus
, and beta-lactam and co-trimoxazole resistance in
Streptococcus pneumoniae
with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in
Mycobacterium tuberculosis
, achieving accuracies ranging from 71–88%. This set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27297683</pmid><doi>10.1038/srep27930</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-06, Vol.6 (1), p.27930-27930, Article 27930 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4906388 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/114 631/114/129/2043 631/114/1305 adaptive boosting Algorithms Anti-Bacterial Agents - therapeutic use Antibiotic resistance Antibiotics Antimicrobial agents Bacterial Infections - drug therapy BASIC BIOLOGICAL SCIENCES Clinical Decision-Making Computational Biology computational biology and bioinformatics Data Curation Databases, Genetic Drug resistance Drug Resistance, Microbial - genetics Genes genetic databases genome annotation Genome, Bacterial - genetics Genomes Genomics Genotype & phenotype Global health Humanities and Social Sciences Humans Machine Learning Medical research Metadata Microbial Sensitivity Tests Molecular Sequence Annotation multidisciplinary National Institutes of Health (U.S.) Pathogens Prognosis random forest Science Streptococcus infections support vector machines United States |
title | Antimicrobial Resistance Prediction in PATRIC and RAST |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimicrobial%20Resistance%20Prediction%20in%20PATRIC%20and%20RAST&rft.jtitle=Scientific%20reports&rft.au=Davis,%20James%20J.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2016-06-14&rft.volume=6&rft.issue=1&rft.spage=27930&rft.epage=27930&rft.pages=27930-27930&rft.artnum=27930&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep27930&rft_dat=%3Cproquest_pubme%3E4095137681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798223300&rft_id=info:pmid/27297683&rfr_iscdi=true |