Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy

The organization of filamentous actin and myosin II molecular motor contractility is known to modify the mechanical properties of the cell cortical actomyosin cytoskeleton. Here we describe a novel method, to our knowledge, for using force spectroscopy approach curves with tipless cantilevers to det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2016-06, Vol.110 (11), p.2528-2539
Hauptverfasser: Cartagena-Rivera, Alexander X., Logue, Jeremy S., Waterman, Clare M., Chadwick, Richard S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2539
container_issue 11
container_start_page 2528
container_title Biophysical journal
container_volume 110
creator Cartagena-Rivera, Alexander X.
Logue, Jeremy S.
Waterman, Clare M.
Chadwick, Richard S.
description The organization of filamentous actin and myosin II molecular motor contractility is known to modify the mechanical properties of the cell cortical actomyosin cytoskeleton. Here we describe a novel method, to our knowledge, for using force spectroscopy approach curves with tipless cantilevers to determine the actomyosin cortical tension, elastic modulus, and intracellular pressure of nonadherent cells. We validated the method by measuring the surface tension of water in oil microdrops deposited on a glass surface. We extracted an average tension of T ∼ 20.25 nN/μm, which agrees with macroscopic experimental methods. We then measured cortical mechanical properties in nonadherent human foreskin fibroblasts and THP-1 human monocytes before and after pharmacological perturbations of actomyosin activity. Our results show that myosin II activity and actin polymerization increase cortex tension and intracellular pressure, whereas branched actin networks decreased them. Interestingly, myosin II activity stiffens the cortex and branched actin networks soften it, but actin polymerization has no effect on cortex stiffness. Our method is capable of detecting changes in cell mechanical properties in response to perturbations of the cytoskeleton, allowing characterization with physically relevant parameters. Altogether, this simple method should be of broad application for deciphering the molecular regulation of cell cortical mechanical properties.
doi_str_mv 10.1016/j.bpj.2016.04.034
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4906360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349516302375</els_id><sourcerecordid>1795859267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-c54a201477be06ab5b6673693393d0223d836c97869095d50cab8eabe6df674d3</originalsourceid><addsrcrecordid>eNp9UU2P0zAQtRCILYUfwAX5yKXZcfyVCAmp6rIs0i5wgLPl2FPqKomDna7Uf49LlxVcuHhGnjfP7_kR8ppBxYCpy33VTfuqLm0FogIunpAFk6JeATTqKVkAgFpx0coL8iLnPQCrJbDn5KLWtVa1hgXxazfH4RhzGOkmpjk429M7dDs7_m6_pjhhucZMC-JzHK3fYcJxphvs-0yvcMY0hBE97Y50XbiCo9cxOaR3waWYXZyOL8mzre0zvnqoS_L9-sO3zc3q9svHT5v17cpJpudyClvMCK07BGU72SmluWo5b7mHuua-4cq1ulEttNJLcLZr0Hao_FZp4fmSvD_zToduQO-KzGR7M6Uw2HQ00Qbz72QMO_Mj3hvRguIKCsHbB4IUfx4wz2YI2RWjdsR4yIbpVjayrYusJWFn6MlkTrh9fIaBOaVj9qakY07pGBCmpFN23vyt73HjTxwF8O4MwPJL9wGTyS7g6NCHhG42Pob_0P8CtOmhmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795859267</pqid></control><display><type>article</type><title>Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cartagena-Rivera, Alexander X. ; Logue, Jeremy S. ; Waterman, Clare M. ; Chadwick, Richard S.</creator><creatorcontrib>Cartagena-Rivera, Alexander X. ; Logue, Jeremy S. ; Waterman, Clare M. ; Chadwick, Richard S.</creatorcontrib><description>The organization of filamentous actin and myosin II molecular motor contractility is known to modify the mechanical properties of the cell cortical actomyosin cytoskeleton. Here we describe a novel method, to our knowledge, for using force spectroscopy approach curves with tipless cantilevers to determine the actomyosin cortical tension, elastic modulus, and intracellular pressure of nonadherent cells. We validated the method by measuring the surface tension of water in oil microdrops deposited on a glass surface. We extracted an average tension of T ∼ 20.25 nN/μm, which agrees with macroscopic experimental methods. We then measured cortical mechanical properties in nonadherent human foreskin fibroblasts and THP-1 human monocytes before and after pharmacological perturbations of actomyosin activity. Our results show that myosin II activity and actin polymerization increase cortex tension and intracellular pressure, whereas branched actin networks decreased them. Interestingly, myosin II activity stiffens the cortex and branched actin networks soften it, but actin polymerization has no effect on cortex stiffness. Our method is capable of detecting changes in cell mechanical properties in response to perturbations of the cytoskeleton, allowing characterization with physically relevant parameters. Altogether, this simple method should be of broad application for deciphering the molecular regulation of cell cortical mechanical properties.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2016.04.034</identifier><identifier>PMID: 27276270</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - metabolism ; Actomyosin - metabolism ; Cell Biophysics ; Cell Line ; Cell Physiological Phenomena - drug effects ; Elastic Modulus ; Fibroblasts - drug effects ; Fibroblasts - physiology ; Foreskin - drug effects ; Foreskin - physiology ; Humans ; Image Processing, Computer-Assisted ; Male ; Microscopy, Atomic Force ; Microscopy, Confocal ; Microscopy, Fluorescence ; Models, Biological ; Monocytes - drug effects ; Monocytes - physiology ; Myosin Type II - metabolism ; Pressure ; Surface Properties ; Water - chemistry</subject><ispartof>Biophysical journal, 2016-06, Vol.110 (11), p.2528-2539</ispartof><rights>2016</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-c54a201477be06ab5b6673693393d0223d836c97869095d50cab8eabe6df674d3</citedby><cites>FETCH-LOGICAL-c517t-c54a201477be06ab5b6673693393d0223d836c97869095d50cab8eabe6df674d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906360/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2016.04.034$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27276270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cartagena-Rivera, Alexander X.</creatorcontrib><creatorcontrib>Logue, Jeremy S.</creatorcontrib><creatorcontrib>Waterman, Clare M.</creatorcontrib><creatorcontrib>Chadwick, Richard S.</creatorcontrib><title>Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The organization of filamentous actin and myosin II molecular motor contractility is known to modify the mechanical properties of the cell cortical actomyosin cytoskeleton. Here we describe a novel method, to our knowledge, for using force spectroscopy approach curves with tipless cantilevers to determine the actomyosin cortical tension, elastic modulus, and intracellular pressure of nonadherent cells. We validated the method by measuring the surface tension of water in oil microdrops deposited on a glass surface. We extracted an average tension of T ∼ 20.25 nN/μm, which agrees with macroscopic experimental methods. We then measured cortical mechanical properties in nonadherent human foreskin fibroblasts and THP-1 human monocytes before and after pharmacological perturbations of actomyosin activity. Our results show that myosin II activity and actin polymerization increase cortex tension and intracellular pressure, whereas branched actin networks decreased them. Interestingly, myosin II activity stiffens the cortex and branched actin networks soften it, but actin polymerization has no effect on cortex stiffness. Our method is capable of detecting changes in cell mechanical properties in response to perturbations of the cytoskeleton, allowing characterization with physically relevant parameters. Altogether, this simple method should be of broad application for deciphering the molecular regulation of cell cortical mechanical properties.</description><subject>Actins - metabolism</subject><subject>Actomyosin - metabolism</subject><subject>Cell Biophysics</subject><subject>Cell Line</subject><subject>Cell Physiological Phenomena - drug effects</subject><subject>Elastic Modulus</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - physiology</subject><subject>Foreskin - drug effects</subject><subject>Foreskin - physiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Male</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Biological</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - physiology</subject><subject>Myosin Type II - metabolism</subject><subject>Pressure</subject><subject>Surface Properties</subject><subject>Water - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2P0zAQtRCILYUfwAX5yKXZcfyVCAmp6rIs0i5wgLPl2FPqKomDna7Uf49LlxVcuHhGnjfP7_kR8ppBxYCpy33VTfuqLm0FogIunpAFk6JeATTqKVkAgFpx0coL8iLnPQCrJbDn5KLWtVa1hgXxazfH4RhzGOkmpjk429M7dDs7_m6_pjhhucZMC-JzHK3fYcJxphvs-0yvcMY0hBE97Y50XbiCo9cxOaR3waWYXZyOL8mzre0zvnqoS_L9-sO3zc3q9svHT5v17cpJpudyClvMCK07BGU72SmluWo5b7mHuua-4cq1ulEttNJLcLZr0Hao_FZp4fmSvD_zToduQO-KzGR7M6Uw2HQ00Qbz72QMO_Mj3hvRguIKCsHbB4IUfx4wz2YI2RWjdsR4yIbpVjayrYusJWFn6MlkTrh9fIaBOaVj9qakY07pGBCmpFN23vyt73HjTxwF8O4MwPJL9wGTyS7g6NCHhG42Pob_0P8CtOmhmg</recordid><startdate>20160607</startdate><enddate>20160607</enddate><creator>Cartagena-Rivera, Alexander X.</creator><creator>Logue, Jeremy S.</creator><creator>Waterman, Clare M.</creator><creator>Chadwick, Richard S.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160607</creationdate><title>Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy</title><author>Cartagena-Rivera, Alexander X. ; Logue, Jeremy S. ; Waterman, Clare M. ; Chadwick, Richard S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-c54a201477be06ab5b6673693393d0223d836c97869095d50cab8eabe6df674d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Actins - metabolism</topic><topic>Actomyosin - metabolism</topic><topic>Cell Biophysics</topic><topic>Cell Line</topic><topic>Cell Physiological Phenomena - drug effects</topic><topic>Elastic Modulus</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - physiology</topic><topic>Foreskin - drug effects</topic><topic>Foreskin - physiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Male</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Biological</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - physiology</topic><topic>Myosin Type II - metabolism</topic><topic>Pressure</topic><topic>Surface Properties</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cartagena-Rivera, Alexander X.</creatorcontrib><creatorcontrib>Logue, Jeremy S.</creatorcontrib><creatorcontrib>Waterman, Clare M.</creatorcontrib><creatorcontrib>Chadwick, Richard S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cartagena-Rivera, Alexander X.</au><au>Logue, Jeremy S.</au><au>Waterman, Clare M.</au><au>Chadwick, Richard S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2016-06-07</date><risdate>2016</risdate><volume>110</volume><issue>11</issue><spage>2528</spage><epage>2539</epage><pages>2528-2539</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The organization of filamentous actin and myosin II molecular motor contractility is known to modify the mechanical properties of the cell cortical actomyosin cytoskeleton. Here we describe a novel method, to our knowledge, for using force spectroscopy approach curves with tipless cantilevers to determine the actomyosin cortical tension, elastic modulus, and intracellular pressure of nonadherent cells. We validated the method by measuring the surface tension of water in oil microdrops deposited on a glass surface. We extracted an average tension of T ∼ 20.25 nN/μm, which agrees with macroscopic experimental methods. We then measured cortical mechanical properties in nonadherent human foreskin fibroblasts and THP-1 human monocytes before and after pharmacological perturbations of actomyosin activity. Our results show that myosin II activity and actin polymerization increase cortex tension and intracellular pressure, whereas branched actin networks decreased them. Interestingly, myosin II activity stiffens the cortex and branched actin networks soften it, but actin polymerization has no effect on cortex stiffness. Our method is capable of detecting changes in cell mechanical properties in response to perturbations of the cytoskeleton, allowing characterization with physically relevant parameters. Altogether, this simple method should be of broad application for deciphering the molecular regulation of cell cortical mechanical properties.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27276270</pmid><doi>10.1016/j.bpj.2016.04.034</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2016-06, Vol.110 (11), p.2528-2539
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4906360
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Actins - metabolism
Actomyosin - metabolism
Cell Biophysics
Cell Line
Cell Physiological Phenomena - drug effects
Elastic Modulus
Fibroblasts - drug effects
Fibroblasts - physiology
Foreskin - drug effects
Foreskin - physiology
Humans
Image Processing, Computer-Assisted
Male
Microscopy, Atomic Force
Microscopy, Confocal
Microscopy, Fluorescence
Models, Biological
Monocytes - drug effects
Monocytes - physiology
Myosin Type II - metabolism
Pressure
Surface Properties
Water - chemistry
title Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actomyosin%20Cortical%20Mechanical%20Properties%20in%20Nonadherent%20Cells%20Determined%20by%20Atomic%20Force%20Microscopy&rft.jtitle=Biophysical%20journal&rft.au=Cartagena-Rivera,%20Alexander%C2%A0X.&rft.date=2016-06-07&rft.volume=110&rft.issue=11&rft.spage=2528&rft.epage=2539&rft.pages=2528-2539&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2016.04.034&rft_dat=%3Cproquest_pubme%3E1795859267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795859267&rft_id=info:pmid/27276270&rft_els_id=S0006349516302375&rfr_iscdi=true