Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis

Light, in a quality- and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2004-06, Vol.16 (6), p.1433-1445
Hauptverfasser: Bauer, D, Viczian, A, Kircher, S, Nobis, T, Nitschke, R, Kunkel, T, Panigrahi, K.C.S, Adam, E, Fejes, E, Schafer, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1445
container_issue 6
container_start_page 1433
container_title The Plant cell
container_volume 16
creator Bauer, D
Viczian, A
Kircher, S
Nobis, T
Nitschke, R
Kunkel, T
Panigrahi, K.C.S
Adam, E
Fejes, E
Schafer, E
description Light, in a quality- and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade to regulate the expression of ~2500 genes in Arabidopsis thaliana. Here, we show that controlled degradation of the transcription factor PIF3 is a major regulatory step in light signaling. We demonstrate that accumulation of PIF3 in the nucleus in dark requires constitutive photomorphogenesis 1 (COP1), a negative regulator of photomorphogenesis, and show that red (R) and far-red light (FR) induce rapid degradation of the PIF3 protein. This process is controlled by the concerted action of the R/FR absorbing phyA, phyB, and phyD photoreceptors, and it is not affected by COP1. Rapid light-induced degradation of PIF3 indicates that interaction of PIF3 with these phytochrome species is transient. In addition, we provide evidence that the poc1 mutant, a postulated PIF3 overexpressor that displays hypersensitivity to R but not to FR, lacks detectable amounts of the PIF3 protein. Thus, we propose that PIF3 acts transiently, and its major function is to mediate phytochrome-induced signaling during the developmental switch from skotomorphogenesis to photomorphogenesis and/or dark to light transitions.
doi_str_mv 10.1105/tpc.021568
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_490037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3872228</jstor_id><sourcerecordid>3872228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-a8ca1e0985d919e0a64740993bd692c1d1f1dacde56bead4285d237a99a5772d3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4YzA4sABscV24jg-cKhWfEmVOEAlbtasPcl6ldip7VTqT-Pf4e2uysdpxnqfdzTjmap6zug5Y1S8z7M5p5yJtntQnTJR8xVX3c-HJacNXTWtYCfVk5R2lFImmXpcnTDBhOikOq1-rYNP2eUluxsk8zbkMIVY4oAek0uEEfCWTMuY3TweiYgG5xISMcHnGEZicYhgIbvgSegLdZuD2cYwIXE-YwSTnR9IX2KIpH5HgOQIPpno5jvTUYl4vbiIlvTlMbphm0lyg4dx73aeXETYOBvm0tnT6lEPY8Jnx3hWXX36-GP9ZXX57fPX9cXlyjSyzSvoDDCkqhNWMYUU2kY2VKl6Y1vFDbOsZxaMRdFuEGzDC8hrCUqBkJLb-qz6cKg7L5sJrcEyMYx6jm6CeKsDOP2v4t1WD-FGN4rSWhb_m6M_husFU9aTSwbHETyGJemykU5KwQv4-j9wF5ZYZk-as4J09V21twfIxJBSxP6-EUb1_hp0uQZ9uIYCv_y79T_ocf0FeHEAdqn8_r1ed5Jzvve_Osg9BA1DdElffeeU1ZSqulUl-Q352co7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218778337</pqid></control><display><type>article</type><title>Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bauer, D ; Viczian, A ; Kircher, S ; Nobis, T ; Nitschke, R ; Kunkel, T ; Panigrahi, K.C.S ; Adam, E ; Fejes, E ; Schafer, E</creator><creatorcontrib>Bauer, D ; Viczian, A ; Kircher, S ; Nobis, T ; Nitschke, R ; Kunkel, T ; Panigrahi, K.C.S ; Adam, E ; Fejes, E ; Schafer, E</creatorcontrib><description>Light, in a quality- and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade to regulate the expression of ~2500 genes in Arabidopsis thaliana. Here, we show that controlled degradation of the transcription factor PIF3 is a major regulatory step in light signaling. We demonstrate that accumulation of PIF3 in the nucleus in dark requires constitutive photomorphogenesis 1 (COP1), a negative regulator of photomorphogenesis, and show that red (R) and far-red light (FR) induce rapid degradation of the PIF3 protein. This process is controlled by the concerted action of the R/FR absorbing phyA, phyB, and phyD photoreceptors, and it is not affected by COP1. Rapid light-induced degradation of PIF3 indicates that interaction of PIF3 with these phytochrome species is transient. In addition, we provide evidence that the poc1 mutant, a postulated PIF3 overexpressor that displays hypersensitivity to R but not to FR, lacks detectable amounts of the PIF3 protein. Thus, we propose that PIF3 acts transiently, and its major function is to mediate phytochrome-induced signaling during the developmental switch from skotomorphogenesis to photomorphogenesis and/or dark to light transitions.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.021568</identifier><identifier>PMID: 15155879</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Arabidopsis - metabolism ; Arabidopsis - radiation effects ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Basic Helix-Loop-Helix Transcription Factors ; cyano fluorescent protein ; far-red light ; gene downregulation ; gene expression ; Gene expression regulation ; Genes ; green fluorescent protein ; Hypersensitivity ; Hypocotyls ; Light ; Messenger RNA ; molecular sequence data ; Mutation - genetics ; nucleotide sequences ; Phenotypes ; Photoreception ; Photoreceptor Cells ; photoreceptors ; phytochrome ; Phytochrome - metabolism ; Phytochrome A ; Phytochrome B ; Plant cells ; Plants, Genetically Modified ; protein binding ; protein degradation ; Protein Processing, Post-Translational - radiation effects ; protein synthesis ; Proteins ; recombinant proteins ; red light ; Regulator genes ; regulatory proteins ; Seedlings ; Seedlings - genetics ; Seedlings - metabolism ; Seedlings - radiation effects ; signal transduction ; Signal Transduction - radiation effects ; transcription (genetics) ; transcription factors ; Transcription Factors - metabolism ; Transgenic plants</subject><ispartof>The Plant cell, 2004-06, Vol.16 (6), p.1433-1445</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Physiologists Jun 2004</rights><rights>Copyright © 2004, American Society of Plant Biologists 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-a8ca1e0985d919e0a64740993bd692c1d1f1dacde56bead4285d237a99a5772d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3872228$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3872228$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15155879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, D</creatorcontrib><creatorcontrib>Viczian, A</creatorcontrib><creatorcontrib>Kircher, S</creatorcontrib><creatorcontrib>Nobis, T</creatorcontrib><creatorcontrib>Nitschke, R</creatorcontrib><creatorcontrib>Kunkel, T</creatorcontrib><creatorcontrib>Panigrahi, K.C.S</creatorcontrib><creatorcontrib>Adam, E</creatorcontrib><creatorcontrib>Fejes, E</creatorcontrib><creatorcontrib>Schafer, E</creatorcontrib><title>Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Light, in a quality- and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade to regulate the expression of ~2500 genes in Arabidopsis thaliana. Here, we show that controlled degradation of the transcription factor PIF3 is a major regulatory step in light signaling. We demonstrate that accumulation of PIF3 in the nucleus in dark requires constitutive photomorphogenesis 1 (COP1), a negative regulator of photomorphogenesis, and show that red (R) and far-red light (FR) induce rapid degradation of the PIF3 protein. This process is controlled by the concerted action of the R/FR absorbing phyA, phyB, and phyD photoreceptors, and it is not affected by COP1. Rapid light-induced degradation of PIF3 indicates that interaction of PIF3 with these phytochrome species is transient. In addition, we provide evidence that the poc1 mutant, a postulated PIF3 overexpressor that displays hypersensitivity to R but not to FR, lacks detectable amounts of the PIF3 protein. Thus, we propose that PIF3 acts transiently, and its major function is to mediate phytochrome-induced signaling during the developmental switch from skotomorphogenesis to photomorphogenesis and/or dark to light transitions.</description><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - radiation effects</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Basic Helix-Loop-Helix Transcription Factors</subject><subject>cyano fluorescent protein</subject><subject>far-red light</subject><subject>gene downregulation</subject><subject>gene expression</subject><subject>Gene expression regulation</subject><subject>Genes</subject><subject>green fluorescent protein</subject><subject>Hypersensitivity</subject><subject>Hypocotyls</subject><subject>Light</subject><subject>Messenger RNA</subject><subject>molecular sequence data</subject><subject>Mutation - genetics</subject><subject>nucleotide sequences</subject><subject>Phenotypes</subject><subject>Photoreception</subject><subject>Photoreceptor Cells</subject><subject>photoreceptors</subject><subject>phytochrome</subject><subject>Phytochrome - metabolism</subject><subject>Phytochrome A</subject><subject>Phytochrome B</subject><subject>Plant cells</subject><subject>Plants, Genetically Modified</subject><subject>protein binding</subject><subject>protein degradation</subject><subject>Protein Processing, Post-Translational - radiation effects</subject><subject>protein synthesis</subject><subject>Proteins</subject><subject>recombinant proteins</subject><subject>red light</subject><subject>Regulator genes</subject><subject>regulatory proteins</subject><subject>Seedlings</subject><subject>Seedlings - genetics</subject><subject>Seedlings - metabolism</subject><subject>Seedlings - radiation effects</subject><subject>signal transduction</subject><subject>Signal Transduction - radiation effects</subject><subject>transcription (genetics)</subject><subject>transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Transgenic plants</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4YzA4sABscV24jg-cKhWfEmVOEAlbtasPcl6ldip7VTqT-Pf4e2uysdpxnqfdzTjmap6zug5Y1S8z7M5p5yJtntQnTJR8xVX3c-HJacNXTWtYCfVk5R2lFImmXpcnTDBhOikOq1-rYNP2eUluxsk8zbkMIVY4oAek0uEEfCWTMuY3TweiYgG5xISMcHnGEZicYhgIbvgSegLdZuD2cYwIXE-YwSTnR9IX2KIpH5HgOQIPpno5jvTUYl4vbiIlvTlMbphm0lyg4dx73aeXETYOBvm0tnT6lEPY8Jnx3hWXX36-GP9ZXX57fPX9cXlyjSyzSvoDDCkqhNWMYUU2kY2VKl6Y1vFDbOsZxaMRdFuEGzDC8hrCUqBkJLb-qz6cKg7L5sJrcEyMYx6jm6CeKsDOP2v4t1WD-FGN4rSWhb_m6M_husFU9aTSwbHETyGJemykU5KwQv4-j9wF5ZYZk-as4J09V21twfIxJBSxP6-EUb1_hp0uQZ9uIYCv_y79T_ocf0FeHEAdqn8_r1ed5Jzvve_Osg9BA1DdElffeeU1ZSqulUl-Q352co7</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Bauer, D</creator><creator>Viczian, A</creator><creator>Kircher, S</creator><creator>Nobis, T</creator><creator>Nitschke, R</creator><creator>Kunkel, T</creator><creator>Panigrahi, K.C.S</creator><creator>Adam, E</creator><creator>Fejes, E</creator><creator>Schafer, E</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040601</creationdate><title>Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis</title><author>Bauer, D ; Viczian, A ; Kircher, S ; Nobis, T ; Nitschke, R ; Kunkel, T ; Panigrahi, K.C.S ; Adam, E ; Fejes, E ; Schafer, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-a8ca1e0985d919e0a64740993bd692c1d1f1dacde56bead4285d237a99a5772d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - radiation effects</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Basic Helix-Loop-Helix Transcription Factors</topic><topic>cyano fluorescent protein</topic><topic>far-red light</topic><topic>gene downregulation</topic><topic>gene expression</topic><topic>Gene expression regulation</topic><topic>Genes</topic><topic>green fluorescent protein</topic><topic>Hypersensitivity</topic><topic>Hypocotyls</topic><topic>Light</topic><topic>Messenger RNA</topic><topic>molecular sequence data</topic><topic>Mutation - genetics</topic><topic>nucleotide sequences</topic><topic>Phenotypes</topic><topic>Photoreception</topic><topic>Photoreceptor Cells</topic><topic>photoreceptors</topic><topic>phytochrome</topic><topic>Phytochrome - metabolism</topic><topic>Phytochrome A</topic><topic>Phytochrome B</topic><topic>Plant cells</topic><topic>Plants, Genetically Modified</topic><topic>protein binding</topic><topic>protein degradation</topic><topic>Protein Processing, Post-Translational - radiation effects</topic><topic>protein synthesis</topic><topic>Proteins</topic><topic>recombinant proteins</topic><topic>red light</topic><topic>Regulator genes</topic><topic>regulatory proteins</topic><topic>Seedlings</topic><topic>Seedlings - genetics</topic><topic>Seedlings - metabolism</topic><topic>Seedlings - radiation effects</topic><topic>signal transduction</topic><topic>Signal Transduction - radiation effects</topic><topic>transcription (genetics)</topic><topic>transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, D</creatorcontrib><creatorcontrib>Viczian, A</creatorcontrib><creatorcontrib>Kircher, S</creatorcontrib><creatorcontrib>Nobis, T</creatorcontrib><creatorcontrib>Nitschke, R</creatorcontrib><creatorcontrib>Kunkel, T</creatorcontrib><creatorcontrib>Panigrahi, K.C.S</creatorcontrib><creatorcontrib>Adam, E</creatorcontrib><creatorcontrib>Fejes, E</creatorcontrib><creatorcontrib>Schafer, E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, D</au><au>Viczian, A</au><au>Kircher, S</au><au>Nobis, T</au><au>Nitschke, R</au><au>Kunkel, T</au><au>Panigrahi, K.C.S</au><au>Adam, E</au><au>Fejes, E</au><au>Schafer, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2004-06-01</date><risdate>2004</risdate><volume>16</volume><issue>6</issue><spage>1433</spage><epage>1445</epage><pages>1433-1445</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>Light, in a quality- and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade to regulate the expression of ~2500 genes in Arabidopsis thaliana. Here, we show that controlled degradation of the transcription factor PIF3 is a major regulatory step in light signaling. We demonstrate that accumulation of PIF3 in the nucleus in dark requires constitutive photomorphogenesis 1 (COP1), a negative regulator of photomorphogenesis, and show that red (R) and far-red light (FR) induce rapid degradation of the PIF3 protein. This process is controlled by the concerted action of the R/FR absorbing phyA, phyB, and phyD photoreceptors, and it is not affected by COP1. Rapid light-induced degradation of PIF3 indicates that interaction of PIF3 with these phytochrome species is transient. In addition, we provide evidence that the poc1 mutant, a postulated PIF3 overexpressor that displays hypersensitivity to R but not to FR, lacks detectable amounts of the PIF3 protein. Thus, we propose that PIF3 acts transiently, and its major function is to mediate phytochrome-induced signaling during the developmental switch from skotomorphogenesis to photomorphogenesis and/or dark to light transitions.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>15155879</pmid><doi>10.1105/tpc.021568</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2004-06, Vol.16 (6), p.1433-1445
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_490037
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Arabidopsis - metabolism
Arabidopsis - radiation effects
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Basic Helix-Loop-Helix Transcription Factors
cyano fluorescent protein
far-red light
gene downregulation
gene expression
Gene expression regulation
Genes
green fluorescent protein
Hypersensitivity
Hypocotyls
Light
Messenger RNA
molecular sequence data
Mutation - genetics
nucleotide sequences
Phenotypes
Photoreception
Photoreceptor Cells
photoreceptors
phytochrome
Phytochrome - metabolism
Phytochrome A
Phytochrome B
Plant cells
Plants, Genetically Modified
protein binding
protein degradation
Protein Processing, Post-Translational - radiation effects
protein synthesis
Proteins
recombinant proteins
red light
Regulator genes
regulatory proteins
Seedlings
Seedlings - genetics
Seedlings - metabolism
Seedlings - radiation effects
signal transduction
Signal Transduction - radiation effects
transcription (genetics)
transcription factors
Transcription Factors - metabolism
Transgenic plants
title Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20photomorphogenesis%201%20and%20multiple%20photoreceptors%20control%20degradation%20of%20phytochrome%20interacting%20factor%203,%20a%20transcription%20factor%20required%20for%20light%20signaling%20in%20Arabidopsis&rft.jtitle=The%20Plant%20cell&rft.au=Bauer,%20D&rft.date=2004-06-01&rft.volume=16&rft.issue=6&rft.spage=1433&rft.epage=1445&rft.pages=1433-1445&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.021568&rft_dat=%3Cjstor_pubme%3E3872228%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218778337&rft_id=info:pmid/15155879&rft_jstor_id=3872228&rfr_iscdi=true