CudaChain: an alternative algorithm for finding 2D convex hulls on the GPU
This paper presents an alternative GPU-accelerated convex hull algorithm and a novel S orting-based P reprocessing A pproach (SPA) for planar point sets. The proposed convex hull algorithm termed as CudaChain consists of two stages: (1) two rounds of preprocessing performed on the GPU and (2) the fi...
Gespeichert in:
Veröffentlicht in: | SpringerPlus 2016-05, Vol.5 (1), p.696-696, Article 696 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 696 |
---|---|
container_issue | 1 |
container_start_page | 696 |
container_title | SpringerPlus |
container_volume | 5 |
creator | Mei, Gang |
description | This paper presents an alternative GPU-accelerated convex hull algorithm and a novel
S
orting-based
P
reprocessing
A
pproach
(SPA) for planar point sets. The proposed convex hull algorithm termed as CudaChain consists of two stages: (1) two rounds of preprocessing performed on the GPU and (2) the finalization of calculating the expected convex hull on the CPU. Those interior points locating inside a quadrilateral formed by four extreme points are first discarded, and then the remaining points are distributed into several (typically four) sub regions. For each subset of points, they are first sorted in parallel; then the second round of discarding is performed using SPA; and finally a simple chain is formed for the current remaining points. A simple polygon can be easily generated by directly connecting all the chains in sub regions. The expected convex hull of the input points can be finally obtained by calculating the convex hull of the simple polygon. The library
Thrust
is utilized to realize the parallel sorting, reduction, and partitioning for better efficiency and simplicity. Experimental results show that: (1) SPA can very effectively detect and discard the interior points; and (2) CudaChain achieves 5×–6× speedups over the famous Qhull implementation for 20M points. |
doi_str_mv | 10.1186/s40064-016-2284-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4899387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800400945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-14f39cbe16b9b09e813dbcf04adc9bdae7e81f752ad607c439ab19ef0834e0053</originalsourceid><addsrcrecordid>eNqNkV1LBCEUhiWKiq0f0E0I3XQzpaPrjF0EsX0T1EVdi-Oc2TFmtXRmqX-fy1ZsQZAiHjzPeT36IrRHyRGlpTiOnBDBM0JFluclz_ga2s6pZBktCV1fibfQbozPJA1RUF6QTbSVF2xMZF5so9vJUOtJq607wdph3fUQnO7tHFI89cH27Qw3PuDGutq6Kc7PsfFuDm-4HbouYu9w3wK-enjaQRuN7iLsfu4j9HR58Ti5zu7ur24mZ3eZGQvZZ5Q3TJoKqKhkRSSUlNWVaQjXtZFVraFIR00xznUtSGE4k7qiEhpSMg6EjNkInS51X4ZqBrUB1wfdqZdgZzq8K6-t-plxtlVTP1e8lJKVRRI4_BQI_nWA2KuZjQa6TjvwQ1Tp00pB0_oXSpIPki_aOviFPvsh_WW3oLiQTKSZKLqkTPAxBmi--6ZELXxVS19V8lUtfFU81eyvPvi74svFBORLIKaUm0JYufpP1Q8Zsayd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846936363</pqid></control><display><type>article</type><title>CudaChain: an alternative algorithm for finding 2D convex hulls on the GPU</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Mei, Gang</creator><creatorcontrib>Mei, Gang</creatorcontrib><description>This paper presents an alternative GPU-accelerated convex hull algorithm and a novel
S
orting-based
P
reprocessing
A
pproach
(SPA) for planar point sets. The proposed convex hull algorithm termed as CudaChain consists of two stages: (1) two rounds of preprocessing performed on the GPU and (2) the finalization of calculating the expected convex hull on the CPU. Those interior points locating inside a quadrilateral formed by four extreme points are first discarded, and then the remaining points are distributed into several (typically four) sub regions. For each subset of points, they are first sorted in parallel; then the second round of discarding is performed using SPA; and finally a simple chain is formed for the current remaining points. A simple polygon can be easily generated by directly connecting all the chains in sub regions. The expected convex hull of the input points can be finally obtained by calculating the convex hull of the simple polygon. The library
Thrust
is utilized to realize the parallel sorting, reduction, and partitioning for better efficiency and simplicity. Experimental results show that: (1) SPA can very effectively detect and discard the interior points; and (2) CudaChain achieves 5×–6× speedups over the famous Qhull implementation for 20M points.</description><identifier>ISSN: 2193-1801</identifier><identifier>EISSN: 2193-1801</identifier><identifier>DOI: 10.1186/s40064-016-2284-4</identifier><identifier>PMID: 27350927</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computer Science ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>SpringerPlus, 2016-05, Vol.5 (1), p.696-696, Article 696</ispartof><rights>The Author(s). 2016</rights><rights>SpringerPlus is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-14f39cbe16b9b09e813dbcf04adc9bdae7e81f752ad607c439ab19ef0834e0053</citedby><cites>FETCH-LOGICAL-c569t-14f39cbe16b9b09e813dbcf04adc9bdae7e81f752ad607c439ab19ef0834e0053</cites><orcidid>0000-0003-0026-5423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899387/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899387/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27350927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Gang</creatorcontrib><title>CudaChain: an alternative algorithm for finding 2D convex hulls on the GPU</title><title>SpringerPlus</title><addtitle>SpringerPlus</addtitle><addtitle>Springerplus</addtitle><description>This paper presents an alternative GPU-accelerated convex hull algorithm and a novel
S
orting-based
P
reprocessing
A
pproach
(SPA) for planar point sets. The proposed convex hull algorithm termed as CudaChain consists of two stages: (1) two rounds of preprocessing performed on the GPU and (2) the finalization of calculating the expected convex hull on the CPU. Those interior points locating inside a quadrilateral formed by four extreme points are first discarded, and then the remaining points are distributed into several (typically four) sub regions. For each subset of points, they are first sorted in parallel; then the second round of discarding is performed using SPA; and finally a simple chain is formed for the current remaining points. A simple polygon can be easily generated by directly connecting all the chains in sub regions. The expected convex hull of the input points can be finally obtained by calculating the convex hull of the simple polygon. The library
Thrust
is utilized to realize the parallel sorting, reduction, and partitioning for better efficiency and simplicity. Experimental results show that: (1) SPA can very effectively detect and discard the interior points; and (2) CudaChain achieves 5×–6× speedups over the famous Qhull implementation for 20M points.</description><subject>Computer Science</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2193-1801</issn><issn>2193-1801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1LBCEUhiWKiq0f0E0I3XQzpaPrjF0EsX0T1EVdi-Oc2TFmtXRmqX-fy1ZsQZAiHjzPeT36IrRHyRGlpTiOnBDBM0JFluclz_ga2s6pZBktCV1fibfQbozPJA1RUF6QTbSVF2xMZF5so9vJUOtJq607wdph3fUQnO7tHFI89cH27Qw3PuDGutq6Kc7PsfFuDm-4HbouYu9w3wK-enjaQRuN7iLsfu4j9HR58Ti5zu7ur24mZ3eZGQvZZ5Q3TJoKqKhkRSSUlNWVaQjXtZFVraFIR00xznUtSGE4k7qiEhpSMg6EjNkInS51X4ZqBrUB1wfdqZdgZzq8K6-t-plxtlVTP1e8lJKVRRI4_BQI_nWA2KuZjQa6TjvwQ1Tp00pB0_oXSpIPki_aOviFPvsh_WW3oLiQTKSZKLqkTPAxBmi--6ZELXxVS19V8lUtfFU81eyvPvi74svFBORLIKaUm0JYufpP1Q8Zsayd</recordid><startdate>20160521</startdate><enddate>20160521</enddate><creator>Mei, Gang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0026-5423</orcidid></search><sort><creationdate>20160521</creationdate><title>CudaChain: an alternative algorithm for finding 2D convex hulls on the GPU</title><author>Mei, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-14f39cbe16b9b09e813dbcf04adc9bdae7e81f752ad607c439ab19ef0834e0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Science</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Gang</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>SpringerPlus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CudaChain: an alternative algorithm for finding 2D convex hulls on the GPU</atitle><jtitle>SpringerPlus</jtitle><stitle>SpringerPlus</stitle><addtitle>Springerplus</addtitle><date>2016-05-21</date><risdate>2016</risdate><volume>5</volume><issue>1</issue><spage>696</spage><epage>696</epage><pages>696-696</pages><artnum>696</artnum><issn>2193-1801</issn><eissn>2193-1801</eissn><abstract>This paper presents an alternative GPU-accelerated convex hull algorithm and a novel
S
orting-based
P
reprocessing
A
pproach
(SPA) for planar point sets. The proposed convex hull algorithm termed as CudaChain consists of two stages: (1) two rounds of preprocessing performed on the GPU and (2) the finalization of calculating the expected convex hull on the CPU. Those interior points locating inside a quadrilateral formed by four extreme points are first discarded, and then the remaining points are distributed into several (typically four) sub regions. For each subset of points, they are first sorted in parallel; then the second round of discarding is performed using SPA; and finally a simple chain is formed for the current remaining points. A simple polygon can be easily generated by directly connecting all the chains in sub regions. The expected convex hull of the input points can be finally obtained by calculating the convex hull of the simple polygon. The library
Thrust
is utilized to realize the parallel sorting, reduction, and partitioning for better efficiency and simplicity. Experimental results show that: (1) SPA can very effectively detect and discard the interior points; and (2) CudaChain achieves 5×–6× speedups over the famous Qhull implementation for 20M points.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>27350927</pmid><doi>10.1186/s40064-016-2284-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0026-5423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-1801 |
ispartof | SpringerPlus, 2016-05, Vol.5 (1), p.696-696, Article 696 |
issn | 2193-1801 2193-1801 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4899387 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | Computer Science Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | CudaChain: an alternative algorithm for finding 2D convex hulls on the GPU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CudaChain:%20an%20alternative%20algorithm%20for%20finding%202D%20convex%20hulls%20on%20the%20GPU&rft.jtitle=SpringerPlus&rft.au=Mei,%20Gang&rft.date=2016-05-21&rft.volume=5&rft.issue=1&rft.spage=696&rft.epage=696&rft.pages=696-696&rft.artnum=696&rft.issn=2193-1801&rft.eissn=2193-1801&rft_id=info:doi/10.1186/s40064-016-2284-4&rft_dat=%3Cproquest_pubme%3E1800400945%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846936363&rft_id=info:pmid/27350927&rfr_iscdi=true |