Anaerobic detoxification of acetic acid in a thermophilic ethanologen

BACKGROUND: The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology for biofuels 2015-05, Vol.8 (1), p.75-75, Article 75
Hauptverfasser: Shaw, A Joe, Miller, Bethany B, Rogers, Stephen R, Kenealy, William R, Meola, Alex, Bhandiwad, Ashwini, Sillers, W Ryan, Shikhare, Indraneel, Hogsett, David A, Herring, Christopher D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 75
container_title Biotechnology for biofuels
container_volume 8
creator Shaw, A Joe
Miller, Bethany B
Rogers, Stephen R
Kenealy, William R
Meola, Alex
Bhandiwad, Ashwini
Sillers, W Ryan
Shikhare, Indraneel
Hogsett, David A
Herring, Christopher D
description BACKGROUND: The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. RESULTS: We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum. The first steps of the pathway, a reversible conversion of acetate to acetyl-CoA, are catalyzed by the native T. saccharolyticum enzymes acetate kinase and phosphotransacetylase. ack and pta normally divert 30% of catabolic carbon flux to acetic acid; however, their re-introduction in evolved ethanologen strains resulted in virtually no acetic acid production. Conversion between acetic acid and acetyl-CoA remained active, as evidenced by rapid¹³C label transfer from exogenous acetate to ethanol. Genomic re-sequencing of six independently evolved ethanologen strains showed convergent mutations in the hfs hydrogenase gene cluster, which when transferred to wildtype T. saccharolyticum conferred a low acid production phenotype. Thus, the mutated hfs genes effectively separate acetic acid production and consumption from central metabolism, despite their intersecting at the common intermediate acetyl-CoA. To drive acetic acid conversion to a less inhibitory product, the enzymes thiolase, acetoacetate:acetate CoA-transferase, and acetoacetate decarboxylase were assembled in T. saccharolyticum with genes from thermophilic donor organisms that do not natively produce acetone. The resultant strain converted acetic acid to acetone and ethanol while maintaining a metabolic yield of 0.50 g ethanol per gram carbohydrate. CONCLUSIONS: Conversion of acetic acid to acetone results in improved ethanol productivity and titer and is an attractive low-cost solution to acetic acid inhibition.
doi_str_mv 10.1186/s13068-015-0257-4
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4898469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541601086</galeid><sourcerecordid>A541601086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-e5736039fe880c304e9406237564c30229417b0220af213d929f59443d757e3f3</originalsourceid><addsrcrecordid>eNpVkstu1DAUhiMEoqXwAGwgYgWLFN8vm0qjqkClSkiUri2Pc5wYJfYQe1B5ezxKqTry4tjH3_mPL3_TvMXoHGMlPmdMkVAdwrxDhMuOPWtOseSsE4qy50_mJ82rnH8hJLBE8mVzQiSRWml92lxtooUlbYNreyjpPvjgbAkptsm31kGpG9aFvg2xtW0ZYZnTbgxTTUMZbUxTGiC-bl54O2V48xDPmrsvVz8vv3U3379eX25uOsc1LR1wSQWi2oNSyFHEQDMkCJVcsLokRDMstzUi6wmmvSbac80Y7SWXQD09ay5W3d1-O0PvIJbFTma3hNkuf02ywRzvxDCaIf0xTGnFhK4CH1aBlEsw2YUCbnQpRnDFYI4o4gfo40OXJf3eQy5mDtnBNNkIaZ8NlporrolgFT1f0cFOYEL0qbZ1dfQwh6oLPtT8hjMsEEZK1IJPRwWVKXBfBrvP2Vzf_jhm8cq6JeW8gH-8KEbmYACzGsBUA5iDAczhQO-evtBjxf8fr8D7FfA2GTssIZu7W1IVEMJKMY7pP7eLsjU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795859264</pqid></control><display><type>article</type><title>Anaerobic detoxification of acetic acid in a thermophilic ethanologen</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shaw, A Joe ; Miller, Bethany B ; Rogers, Stephen R ; Kenealy, William R ; Meola, Alex ; Bhandiwad, Ashwini ; Sillers, W Ryan ; Shikhare, Indraneel ; Hogsett, David A ; Herring, Christopher D</creator><creatorcontrib>Shaw, A Joe ; Miller, Bethany B ; Rogers, Stephen R ; Kenealy, William R ; Meola, Alex ; Bhandiwad, Ashwini ; Sillers, W Ryan ; Shikhare, Indraneel ; Hogsett, David A ; Herring, Christopher D ; Mascoma Corp., Waltham, MA (United States)</creatorcontrib><description>BACKGROUND: The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. RESULTS: We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum. The first steps of the pathway, a reversible conversion of acetate to acetyl-CoA, are catalyzed by the native T. saccharolyticum enzymes acetate kinase and phosphotransacetylase. ack and pta normally divert 30% of catabolic carbon flux to acetic acid; however, their re-introduction in evolved ethanologen strains resulted in virtually no acetic acid production. Conversion between acetic acid and acetyl-CoA remained active, as evidenced by rapid¹³C label transfer from exogenous acetate to ethanol. Genomic re-sequencing of six independently evolved ethanologen strains showed convergent mutations in the hfs hydrogenase gene cluster, which when transferred to wildtype T. saccharolyticum conferred a low acid production phenotype. Thus, the mutated hfs genes effectively separate acetic acid production and consumption from central metabolism, despite their intersecting at the common intermediate acetyl-CoA. To drive acetic acid conversion to a less inhibitory product, the enzymes thiolase, acetoacetate:acetate CoA-transferase, and acetoacetate decarboxylase were assembled in T. saccharolyticum with genes from thermophilic donor organisms that do not natively produce acetone. The resultant strain converted acetic acid to acetone and ethanol while maintaining a metabolic yield of 0.50 g ethanol per gram carbohydrate. CONCLUSIONS: Conversion of acetic acid to acetone results in improved ethanol productivity and titer and is an attractive low-cost solution to acetic acid inhibition.</description><identifier>ISSN: 1754-6834</identifier><identifier>EISSN: 1754-6834</identifier><identifier>DOI: 10.1186/s13068-015-0257-4</identifier><identifier>PMID: 27279899</identifier><language>eng</language><publisher>England: Springer-Verlag</publisher><subject>acetate kinase ; Acetates ; Acetic acid ; Acetone ; acetyl coenzyme A ; bacteria ; biochemical pathways ; Biological products ; biomass ; Biotechnology &amp; Applied Microbiology ; carbon ; Cellulosic ethanol ; Energy &amp; Fuels Acetate detoxification ; Enzymes ; ethanol ; Fermentation ; ferredoxin hydrogenase ; genes ; hemicellulose ; Inhibitors ; Metabolic engineering ; Methods ; mutation ; phenotype ; Production processes ; Thermoanaerobacterium saccharolyticum ; toxicity</subject><ispartof>Biotechnology for biofuels, 2015-05, Vol.8 (1), p.75-75, Article 75</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Shaw et al.; licensee BioMed Central. 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-e5736039fe880c304e9406237564c30229417b0220af213d929f59443d757e3f3</citedby><cites>FETCH-LOGICAL-c593t-e5736039fe880c304e9406237564c30229417b0220af213d929f59443d757e3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898469/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898469/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27279899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1503059$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, A Joe</creatorcontrib><creatorcontrib>Miller, Bethany B</creatorcontrib><creatorcontrib>Rogers, Stephen R</creatorcontrib><creatorcontrib>Kenealy, William R</creatorcontrib><creatorcontrib>Meola, Alex</creatorcontrib><creatorcontrib>Bhandiwad, Ashwini</creatorcontrib><creatorcontrib>Sillers, W Ryan</creatorcontrib><creatorcontrib>Shikhare, Indraneel</creatorcontrib><creatorcontrib>Hogsett, David A</creatorcontrib><creatorcontrib>Herring, Christopher D</creatorcontrib><creatorcontrib>Mascoma Corp., Waltham, MA (United States)</creatorcontrib><title>Anaerobic detoxification of acetic acid in a thermophilic ethanologen</title><title>Biotechnology for biofuels</title><addtitle>Biotechnol Biofuels</addtitle><description>BACKGROUND: The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. RESULTS: We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum. The first steps of the pathway, a reversible conversion of acetate to acetyl-CoA, are catalyzed by the native T. saccharolyticum enzymes acetate kinase and phosphotransacetylase. ack and pta normally divert 30% of catabolic carbon flux to acetic acid; however, their re-introduction in evolved ethanologen strains resulted in virtually no acetic acid production. Conversion between acetic acid and acetyl-CoA remained active, as evidenced by rapid¹³C label transfer from exogenous acetate to ethanol. Genomic re-sequencing of six independently evolved ethanologen strains showed convergent mutations in the hfs hydrogenase gene cluster, which when transferred to wildtype T. saccharolyticum conferred a low acid production phenotype. Thus, the mutated hfs genes effectively separate acetic acid production and consumption from central metabolism, despite their intersecting at the common intermediate acetyl-CoA. To drive acetic acid conversion to a less inhibitory product, the enzymes thiolase, acetoacetate:acetate CoA-transferase, and acetoacetate decarboxylase were assembled in T. saccharolyticum with genes from thermophilic donor organisms that do not natively produce acetone. The resultant strain converted acetic acid to acetone and ethanol while maintaining a metabolic yield of 0.50 g ethanol per gram carbohydrate. CONCLUSIONS: Conversion of acetic acid to acetone results in improved ethanol productivity and titer and is an attractive low-cost solution to acetic acid inhibition.</description><subject>acetate kinase</subject><subject>Acetates</subject><subject>Acetic acid</subject><subject>Acetone</subject><subject>acetyl coenzyme A</subject><subject>bacteria</subject><subject>biochemical pathways</subject><subject>Biological products</subject><subject>biomass</subject><subject>Biotechnology &amp; Applied Microbiology</subject><subject>carbon</subject><subject>Cellulosic ethanol</subject><subject>Energy &amp; Fuels Acetate detoxification</subject><subject>Enzymes</subject><subject>ethanol</subject><subject>Fermentation</subject><subject>ferredoxin hydrogenase</subject><subject>genes</subject><subject>hemicellulose</subject><subject>Inhibitors</subject><subject>Metabolic engineering</subject><subject>Methods</subject><subject>mutation</subject><subject>phenotype</subject><subject>Production processes</subject><subject>Thermoanaerobacterium saccharolyticum</subject><subject>toxicity</subject><issn>1754-6834</issn><issn>1754-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkstu1DAUhiMEoqXwAGwgYgWLFN8vm0qjqkClSkiUri2Pc5wYJfYQe1B5ezxKqTry4tjH3_mPL3_TvMXoHGMlPmdMkVAdwrxDhMuOPWtOseSsE4qy50_mJ82rnH8hJLBE8mVzQiSRWml92lxtooUlbYNreyjpPvjgbAkptsm31kGpG9aFvg2xtW0ZYZnTbgxTTUMZbUxTGiC-bl54O2V48xDPmrsvVz8vv3U3379eX25uOsc1LR1wSQWi2oNSyFHEQDMkCJVcsLokRDMstzUi6wmmvSbac80Y7SWXQD09ay5W3d1-O0PvIJbFTma3hNkuf02ywRzvxDCaIf0xTGnFhK4CH1aBlEsw2YUCbnQpRnDFYI4o4gfo40OXJf3eQy5mDtnBNNkIaZ8NlporrolgFT1f0cFOYEL0qbZ1dfQwh6oLPtT8hjMsEEZK1IJPRwWVKXBfBrvP2Vzf_jhm8cq6JeW8gH-8KEbmYACzGsBUA5iDAczhQO-evtBjxf8fr8D7FfA2GTssIZu7W1IVEMJKMY7pP7eLsjU</recordid><startdate>20150509</startdate><enddate>20150509</enddate><creator>Shaw, A Joe</creator><creator>Miller, Bethany B</creator><creator>Rogers, Stephen R</creator><creator>Kenealy, William R</creator><creator>Meola, Alex</creator><creator>Bhandiwad, Ashwini</creator><creator>Sillers, W Ryan</creator><creator>Shikhare, Indraneel</creator><creator>Hogsett, David A</creator><creator>Herring, Christopher D</creator><general>Springer-Verlag</general><general>BioMed Central Ltd</general><general>Springer Science + Business Media</general><general>BioMed Central</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150509</creationdate><title>Anaerobic detoxification of acetic acid in a thermophilic ethanologen</title><author>Shaw, A Joe ; Miller, Bethany B ; Rogers, Stephen R ; Kenealy, William R ; Meola, Alex ; Bhandiwad, Ashwini ; Sillers, W Ryan ; Shikhare, Indraneel ; Hogsett, David A ; Herring, Christopher D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-e5736039fe880c304e9406237564c30229417b0220af213d929f59443d757e3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>acetate kinase</topic><topic>Acetates</topic><topic>Acetic acid</topic><topic>Acetone</topic><topic>acetyl coenzyme A</topic><topic>bacteria</topic><topic>biochemical pathways</topic><topic>Biological products</topic><topic>biomass</topic><topic>Biotechnology &amp; Applied Microbiology</topic><topic>carbon</topic><topic>Cellulosic ethanol</topic><topic>Energy &amp; Fuels Acetate detoxification</topic><topic>Enzymes</topic><topic>ethanol</topic><topic>Fermentation</topic><topic>ferredoxin hydrogenase</topic><topic>genes</topic><topic>hemicellulose</topic><topic>Inhibitors</topic><topic>Metabolic engineering</topic><topic>Methods</topic><topic>mutation</topic><topic>phenotype</topic><topic>Production processes</topic><topic>Thermoanaerobacterium saccharolyticum</topic><topic>toxicity</topic><toplevel>online_resources</toplevel><creatorcontrib>Shaw, A Joe</creatorcontrib><creatorcontrib>Miller, Bethany B</creatorcontrib><creatorcontrib>Rogers, Stephen R</creatorcontrib><creatorcontrib>Kenealy, William R</creatorcontrib><creatorcontrib>Meola, Alex</creatorcontrib><creatorcontrib>Bhandiwad, Ashwini</creatorcontrib><creatorcontrib>Sillers, W Ryan</creatorcontrib><creatorcontrib>Shikhare, Indraneel</creatorcontrib><creatorcontrib>Hogsett, David A</creatorcontrib><creatorcontrib>Herring, Christopher D</creatorcontrib><creatorcontrib>Mascoma Corp., Waltham, MA (United States)</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology for biofuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, A Joe</au><au>Miller, Bethany B</au><au>Rogers, Stephen R</au><au>Kenealy, William R</au><au>Meola, Alex</au><au>Bhandiwad, Ashwini</au><au>Sillers, W Ryan</au><au>Shikhare, Indraneel</au><au>Hogsett, David A</au><au>Herring, Christopher D</au><aucorp>Mascoma Corp., Waltham, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anaerobic detoxification of acetic acid in a thermophilic ethanologen</atitle><jtitle>Biotechnology for biofuels</jtitle><addtitle>Biotechnol Biofuels</addtitle><date>2015-05-09</date><risdate>2015</risdate><volume>8</volume><issue>1</issue><spage>75</spage><epage>75</epage><pages>75-75</pages><artnum>75</artnum><issn>1754-6834</issn><eissn>1754-6834</eissn><abstract>BACKGROUND: The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. RESULTS: We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum. The first steps of the pathway, a reversible conversion of acetate to acetyl-CoA, are catalyzed by the native T. saccharolyticum enzymes acetate kinase and phosphotransacetylase. ack and pta normally divert 30% of catabolic carbon flux to acetic acid; however, their re-introduction in evolved ethanologen strains resulted in virtually no acetic acid production. Conversion between acetic acid and acetyl-CoA remained active, as evidenced by rapid¹³C label transfer from exogenous acetate to ethanol. Genomic re-sequencing of six independently evolved ethanologen strains showed convergent mutations in the hfs hydrogenase gene cluster, which when transferred to wildtype T. saccharolyticum conferred a low acid production phenotype. Thus, the mutated hfs genes effectively separate acetic acid production and consumption from central metabolism, despite their intersecting at the common intermediate acetyl-CoA. To drive acetic acid conversion to a less inhibitory product, the enzymes thiolase, acetoacetate:acetate CoA-transferase, and acetoacetate decarboxylase were assembled in T. saccharolyticum with genes from thermophilic donor organisms that do not natively produce acetone. The resultant strain converted acetic acid to acetone and ethanol while maintaining a metabolic yield of 0.50 g ethanol per gram carbohydrate. CONCLUSIONS: Conversion of acetic acid to acetone results in improved ethanol productivity and titer and is an attractive low-cost solution to acetic acid inhibition.</abstract><cop>England</cop><pub>Springer-Verlag</pub><pmid>27279899</pmid><doi>10.1186/s13068-015-0257-4</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-6834
ispartof Biotechnology for biofuels, 2015-05, Vol.8 (1), p.75-75, Article 75
issn 1754-6834
1754-6834
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4898469
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects acetate kinase
Acetates
Acetic acid
Acetone
acetyl coenzyme A
bacteria
biochemical pathways
Biological products
biomass
Biotechnology & Applied Microbiology
carbon
Cellulosic ethanol
Energy & Fuels Acetate detoxification
Enzymes
ethanol
Fermentation
ferredoxin hydrogenase
genes
hemicellulose
Inhibitors
Metabolic engineering
Methods
mutation
phenotype
Production processes
Thermoanaerobacterium saccharolyticum
toxicity
title Anaerobic detoxification of acetic acid in a thermophilic ethanologen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anaerobic%20detoxification%20of%20acetic%20acid%20in%20a%20thermophilic%20ethanologen&rft.jtitle=Biotechnology%20for%20biofuels&rft.au=Shaw,%20A%20Joe&rft.aucorp=Mascoma%20Corp.,%20Waltham,%20MA%20(United%20States)&rft.date=2015-05-09&rft.volume=8&rft.issue=1&rft.spage=75&rft.epage=75&rft.pages=75-75&rft.artnum=75&rft.issn=1754-6834&rft.eissn=1754-6834&rft_id=info:doi/10.1186/s13068-015-0257-4&rft_dat=%3Cgale_pubme%3EA541601086%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795859264&rft_id=info:pmid/27279899&rft_galeid=A541601086&rfr_iscdi=true