Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice

Homeostasis of riboflavin should be maintained by transporters. Previous in vitro studies have elucidated basic information about riboflavin transporter RFVT3 encoded by SLC52A3 gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance in vivo remain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-06, Vol.6 (1), p.27557-27557, Article 27557
Hauptverfasser: Yoshimatsu, Hiroki, Yonezawa, Atsushi, Yamanishi, Kaori, Yao, Yoshiaki, Sugano, Kumiko, Nakagawa, Shunsaku, Imai, Satoshi, Omura, Tomohiro, Nakagawa, Takayuki, Yano, Ikuko, Masuda, Satohiro, Inui, Ken-ichi, Matsubara, Kazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27557
container_issue 1
container_start_page 27557
container_title Scientific reports
container_volume 6
creator Yoshimatsu, Hiroki
Yonezawa, Atsushi
Yamanishi, Kaori
Yao, Yoshiaki
Sugano, Kumiko
Nakagawa, Shunsaku
Imai, Satoshi
Omura, Tomohiro
Nakagawa, Takayuki
Yano, Ikuko
Masuda, Satohiro
Inui, Ken-ichi
Matsubara, Kazuo
description Homeostasis of riboflavin should be maintained by transporters. Previous in vitro studies have elucidated basic information about riboflavin transporter RFVT3 encoded by SLC52A3 gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance in vivo remain unclear. Here, we investigated the physiological role of RFVT3 using Slc52a3 knockout ( Slc52a3 −/−) mice. Most Slc52a3 −/− mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in Slc52a3 −/− mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates. Slc52a3 −/− fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of Slc52a3 gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency.
doi_str_mv 10.1038/srep27557
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4897618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4082656091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-40cad08bf3f03a607505ceffc88ee58a916a5cbb450c0c16f1172c44b9218dff3</originalsourceid><addsrcrecordid>eNplkU9rVDEUxYNUbKld9AtIwE0tjObvS95GKNWqUHBhS5chL3Mzk5JJpsl7lfn2pkwdppq7SC73x8m5HIROKflICdefaoE1U1KqV-iIESFnjDN2sPc-RCe13pN2JOsF7d-gQ6Za0Y4fobsvoZZpPYaccPb4V3SSWY4XkAA7O1WoOEFOdrQRRxiXNoZxg3-HcYlLGLKP9jEkPAcfXIDkNrh1q-DgLXrtbaxw8nwfo9urrzeX32fXP7_9uLy4njmh2TgTxNk50YPnnnDbESWJdOC90xpAatvTzko3DEISRxztPKWKOSGGnlE9954fo89b3fU0rGDuII3FRrMuYWXLxmQbzMtJCkuzyI9G6F51VDeBs2eBkh8mqKNZheogRtv2nqqhqpdaqY73DX3_D3qfp5Laek-U6Jt7rhr1YUu5kmsLx-_MUGKeEjO7xBr7bt_9jvybTwPOt0Bto7SAsvflf2p_AHX6oKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1794907537</pqid></control><display><type>article</type><title>Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Yoshimatsu, Hiroki ; Yonezawa, Atsushi ; Yamanishi, Kaori ; Yao, Yoshiaki ; Sugano, Kumiko ; Nakagawa, Shunsaku ; Imai, Satoshi ; Omura, Tomohiro ; Nakagawa, Takayuki ; Yano, Ikuko ; Masuda, Satohiro ; Inui, Ken-ichi ; Matsubara, Kazuo</creator><creatorcontrib>Yoshimatsu, Hiroki ; Yonezawa, Atsushi ; Yamanishi, Kaori ; Yao, Yoshiaki ; Sugano, Kumiko ; Nakagawa, Shunsaku ; Imai, Satoshi ; Omura, Tomohiro ; Nakagawa, Takayuki ; Yano, Ikuko ; Masuda, Satohiro ; Inui, Ken-ichi ; Matsubara, Kazuo</creatorcontrib><description>Homeostasis of riboflavin should be maintained by transporters. Previous in vitro studies have elucidated basic information about riboflavin transporter RFVT3 encoded by SLC52A3 gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance in vivo remain unclear. Here, we investigated the physiological role of RFVT3 using Slc52a3 knockout ( Slc52a3 −/−) mice. Most Slc52a3 −/− mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in Slc52a3 −/− mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates. Slc52a3 −/− fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of Slc52a3 gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep27557</identifier><identifier>PMID: 27272163</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 42 ; 42/41 ; 49 ; 64 ; 64/60 ; 692/308/1426 ; 692/699/1702/295 ; 82 ; Animals ; Animals, Newborn - genetics ; Drinking water ; Fatty acids ; Female ; Fetuses ; Homeostasis ; Humanities and Social Sciences ; Humans ; Hyperlipidemias - genetics ; Hyperlipidemias - mortality ; Hyperlipidemias - pathology ; Hypoglycemia - genetics ; Hypoglycemia - mortality ; Hypoglycemia - pathology ; Membrane Transport Proteins - genetics ; Metabolic disorders ; Metabolism ; Mice ; Mice, Knockout ; multidisciplinary ; Neonates ; Placenta ; Placenta - metabolism ; Placenta - pathology ; Plasma ; Pregnancy ; Riboflavin - blood ; Riboflavin - genetics ; Riboflavin Deficiency - genetics ; Riboflavin Deficiency - mortality ; Riboflavin Deficiency - pathology ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2016-06, Vol.6 (1), p.27557-27557, Article 27557</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-40cad08bf3f03a607505ceffc88ee58a916a5cbb450c0c16f1172c44b9218dff3</citedby><cites>FETCH-LOGICAL-c482t-40cad08bf3f03a607505ceffc88ee58a916a5cbb450c0c16f1172c44b9218dff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897618/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897618/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27272163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshimatsu, Hiroki</creatorcontrib><creatorcontrib>Yonezawa, Atsushi</creatorcontrib><creatorcontrib>Yamanishi, Kaori</creatorcontrib><creatorcontrib>Yao, Yoshiaki</creatorcontrib><creatorcontrib>Sugano, Kumiko</creatorcontrib><creatorcontrib>Nakagawa, Shunsaku</creatorcontrib><creatorcontrib>Imai, Satoshi</creatorcontrib><creatorcontrib>Omura, Tomohiro</creatorcontrib><creatorcontrib>Nakagawa, Takayuki</creatorcontrib><creatorcontrib>Yano, Ikuko</creatorcontrib><creatorcontrib>Masuda, Satohiro</creatorcontrib><creatorcontrib>Inui, Ken-ichi</creatorcontrib><creatorcontrib>Matsubara, Kazuo</creatorcontrib><title>Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Homeostasis of riboflavin should be maintained by transporters. Previous in vitro studies have elucidated basic information about riboflavin transporter RFVT3 encoded by SLC52A3 gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance in vivo remain unclear. Here, we investigated the physiological role of RFVT3 using Slc52a3 knockout ( Slc52a3 −/−) mice. Most Slc52a3 −/− mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in Slc52a3 −/− mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates. Slc52a3 −/− fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of Slc52a3 gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency.</description><subject>13</subject><subject>42</subject><subject>42/41</subject><subject>49</subject><subject>64</subject><subject>64/60</subject><subject>692/308/1426</subject><subject>692/699/1702/295</subject><subject>82</subject><subject>Animals</subject><subject>Animals, Newborn - genetics</subject><subject>Drinking water</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Fetuses</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hyperlipidemias - genetics</subject><subject>Hyperlipidemias - mortality</subject><subject>Hyperlipidemias - pathology</subject><subject>Hypoglycemia - genetics</subject><subject>Hypoglycemia - mortality</subject><subject>Hypoglycemia - pathology</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Neonates</subject><subject>Placenta</subject><subject>Placenta - metabolism</subject><subject>Placenta - pathology</subject><subject>Plasma</subject><subject>Pregnancy</subject><subject>Riboflavin - blood</subject><subject>Riboflavin - genetics</subject><subject>Riboflavin Deficiency - genetics</subject><subject>Riboflavin Deficiency - mortality</subject><subject>Riboflavin Deficiency - pathology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU9rVDEUxYNUbKld9AtIwE0tjObvS95GKNWqUHBhS5chL3Mzk5JJpsl7lfn2pkwdppq7SC73x8m5HIROKflICdefaoE1U1KqV-iIESFnjDN2sPc-RCe13pN2JOsF7d-gQ6Za0Y4fobsvoZZpPYaccPb4V3SSWY4XkAA7O1WoOEFOdrQRRxiXNoZxg3-HcYlLGLKP9jEkPAcfXIDkNrh1q-DgLXrtbaxw8nwfo9urrzeX32fXP7_9uLy4njmh2TgTxNk50YPnnnDbESWJdOC90xpAatvTzko3DEISRxztPKWKOSGGnlE9954fo89b3fU0rGDuII3FRrMuYWXLxmQbzMtJCkuzyI9G6F51VDeBs2eBkh8mqKNZheogRtv2nqqhqpdaqY73DX3_D3qfp5Laek-U6Jt7rhr1YUu5kmsLx-_MUGKeEjO7xBr7bt_9jvybTwPOt0Bto7SAsvflf2p_AHX6oKQ</recordid><startdate>20160608</startdate><enddate>20160608</enddate><creator>Yoshimatsu, Hiroki</creator><creator>Yonezawa, Atsushi</creator><creator>Yamanishi, Kaori</creator><creator>Yao, Yoshiaki</creator><creator>Sugano, Kumiko</creator><creator>Nakagawa, Shunsaku</creator><creator>Imai, Satoshi</creator><creator>Omura, Tomohiro</creator><creator>Nakagawa, Takayuki</creator><creator>Yano, Ikuko</creator><creator>Masuda, Satohiro</creator><creator>Inui, Ken-ichi</creator><creator>Matsubara, Kazuo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160608</creationdate><title>Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice</title><author>Yoshimatsu, Hiroki ; Yonezawa, Atsushi ; Yamanishi, Kaori ; Yao, Yoshiaki ; Sugano, Kumiko ; Nakagawa, Shunsaku ; Imai, Satoshi ; Omura, Tomohiro ; Nakagawa, Takayuki ; Yano, Ikuko ; Masuda, Satohiro ; Inui, Ken-ichi ; Matsubara, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-40cad08bf3f03a607505ceffc88ee58a916a5cbb450c0c16f1172c44b9218dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13</topic><topic>42</topic><topic>42/41</topic><topic>49</topic><topic>64</topic><topic>64/60</topic><topic>692/308/1426</topic><topic>692/699/1702/295</topic><topic>82</topic><topic>Animals</topic><topic>Animals, Newborn - genetics</topic><topic>Drinking water</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Fetuses</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hyperlipidemias - genetics</topic><topic>Hyperlipidemias - mortality</topic><topic>Hyperlipidemias - pathology</topic><topic>Hypoglycemia - genetics</topic><topic>Hypoglycemia - mortality</topic><topic>Hypoglycemia - pathology</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Neonates</topic><topic>Placenta</topic><topic>Placenta - metabolism</topic><topic>Placenta - pathology</topic><topic>Plasma</topic><topic>Pregnancy</topic><topic>Riboflavin - blood</topic><topic>Riboflavin - genetics</topic><topic>Riboflavin Deficiency - genetics</topic><topic>Riboflavin Deficiency - mortality</topic><topic>Riboflavin Deficiency - pathology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshimatsu, Hiroki</creatorcontrib><creatorcontrib>Yonezawa, Atsushi</creatorcontrib><creatorcontrib>Yamanishi, Kaori</creatorcontrib><creatorcontrib>Yao, Yoshiaki</creatorcontrib><creatorcontrib>Sugano, Kumiko</creatorcontrib><creatorcontrib>Nakagawa, Shunsaku</creatorcontrib><creatorcontrib>Imai, Satoshi</creatorcontrib><creatorcontrib>Omura, Tomohiro</creatorcontrib><creatorcontrib>Nakagawa, Takayuki</creatorcontrib><creatorcontrib>Yano, Ikuko</creatorcontrib><creatorcontrib>Masuda, Satohiro</creatorcontrib><creatorcontrib>Inui, Ken-ichi</creatorcontrib><creatorcontrib>Matsubara, Kazuo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshimatsu, Hiroki</au><au>Yonezawa, Atsushi</au><au>Yamanishi, Kaori</au><au>Yao, Yoshiaki</au><au>Sugano, Kumiko</au><au>Nakagawa, Shunsaku</au><au>Imai, Satoshi</au><au>Omura, Tomohiro</au><au>Nakagawa, Takayuki</au><au>Yano, Ikuko</au><au>Masuda, Satohiro</au><au>Inui, Ken-ichi</au><au>Matsubara, Kazuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-06-08</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>27557</spage><epage>27557</epage><pages>27557-27557</pages><artnum>27557</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Homeostasis of riboflavin should be maintained by transporters. Previous in vitro studies have elucidated basic information about riboflavin transporter RFVT3 encoded by SLC52A3 gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance in vivo remain unclear. Here, we investigated the physiological role of RFVT3 using Slc52a3 knockout ( Slc52a3 −/−) mice. Most Slc52a3 −/− mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in Slc52a3 −/− mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates. Slc52a3 −/− fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of Slc52a3 gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27272163</pmid><doi>10.1038/srep27557</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-06, Vol.6 (1), p.27557-27557, Article 27557
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4897618
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13
42
42/41
49
64
64/60
692/308/1426
692/699/1702/295
82
Animals
Animals, Newborn - genetics
Drinking water
Fatty acids
Female
Fetuses
Homeostasis
Humanities and Social Sciences
Humans
Hyperlipidemias - genetics
Hyperlipidemias - mortality
Hyperlipidemias - pathology
Hypoglycemia - genetics
Hypoglycemia - mortality
Hypoglycemia - pathology
Membrane Transport Proteins - genetics
Metabolic disorders
Metabolism
Mice
Mice, Knockout
multidisciplinary
Neonates
Placenta
Placenta - metabolism
Placenta - pathology
Plasma
Pregnancy
Riboflavin - blood
Riboflavin - genetics
Riboflavin Deficiency - genetics
Riboflavin Deficiency - mortality
Riboflavin Deficiency - pathology
Science
Science (multidisciplinary)
title Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20of%20Slc52a3%20gene%20causes%20neonatal%20lethality%20with%20riboflavin%20deficiency%20in%20mice&rft.jtitle=Scientific%20reports&rft.au=Yoshimatsu,%20Hiroki&rft.date=2016-06-08&rft.volume=6&rft.issue=1&rft.spage=27557&rft.epage=27557&rft.pages=27557-27557&rft.artnum=27557&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep27557&rft_dat=%3Cproquest_pubme%3E4082656091%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1794907537&rft_id=info:pmid/27272163&rfr_iscdi=true