Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice
Homeostasis of riboflavin should be maintained by transporters. Previous in vitro studies have elucidated basic information about riboflavin transporter RFVT3 encoded by SLC52A3 gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance in vivo remain...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-06, Vol.6 (1), p.27557-27557, Article 27557 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27557 |
---|---|
container_issue | 1 |
container_start_page | 27557 |
container_title | Scientific reports |
container_volume | 6 |
creator | Yoshimatsu, Hiroki Yonezawa, Atsushi Yamanishi, Kaori Yao, Yoshiaki Sugano, Kumiko Nakagawa, Shunsaku Imai, Satoshi Omura, Tomohiro Nakagawa, Takayuki Yano, Ikuko Masuda, Satohiro Inui, Ken-ichi Matsubara, Kazuo |
description | Homeostasis of riboflavin should be maintained by transporters. Previous
in vitro
studies have elucidated basic information about riboflavin transporter RFVT3 encoded by
SLC52A3
gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance
in vivo
remain unclear. Here, we investigated the physiological role of RFVT3 using
Slc52a3
knockout (
Slc52a3
−/−) mice. Most
Slc52a3
−/− mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in
Slc52a3
−/− mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates.
Slc52a3
−/− fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of
Slc52a3
gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency. |
doi_str_mv | 10.1038/srep27557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4897618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4082656091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-40cad08bf3f03a607505ceffc88ee58a916a5cbb450c0c16f1172c44b9218dff3</originalsourceid><addsrcrecordid>eNplkU9rVDEUxYNUbKld9AtIwE0tjObvS95GKNWqUHBhS5chL3Mzk5JJpsl7lfn2pkwdppq7SC73x8m5HIROKflICdefaoE1U1KqV-iIESFnjDN2sPc-RCe13pN2JOsF7d-gQ6Za0Y4fobsvoZZpPYaccPb4V3SSWY4XkAA7O1WoOEFOdrQRRxiXNoZxg3-HcYlLGLKP9jEkPAcfXIDkNrh1q-DgLXrtbaxw8nwfo9urrzeX32fXP7_9uLy4njmh2TgTxNk50YPnnnDbESWJdOC90xpAatvTzko3DEISRxztPKWKOSGGnlE9954fo89b3fU0rGDuII3FRrMuYWXLxmQbzMtJCkuzyI9G6F51VDeBs2eBkh8mqKNZheogRtv2nqqhqpdaqY73DX3_D3qfp5Laek-U6Jt7rhr1YUu5kmsLx-_MUGKeEjO7xBr7bt_9jvybTwPOt0Bto7SAsvflf2p_AHX6oKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1794907537</pqid></control><display><type>article</type><title>Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Yoshimatsu, Hiroki ; Yonezawa, Atsushi ; Yamanishi, Kaori ; Yao, Yoshiaki ; Sugano, Kumiko ; Nakagawa, Shunsaku ; Imai, Satoshi ; Omura, Tomohiro ; Nakagawa, Takayuki ; Yano, Ikuko ; Masuda, Satohiro ; Inui, Ken-ichi ; Matsubara, Kazuo</creator><creatorcontrib>Yoshimatsu, Hiroki ; Yonezawa, Atsushi ; Yamanishi, Kaori ; Yao, Yoshiaki ; Sugano, Kumiko ; Nakagawa, Shunsaku ; Imai, Satoshi ; Omura, Tomohiro ; Nakagawa, Takayuki ; Yano, Ikuko ; Masuda, Satohiro ; Inui, Ken-ichi ; Matsubara, Kazuo</creatorcontrib><description>Homeostasis of riboflavin should be maintained by transporters. Previous
in vitro
studies have elucidated basic information about riboflavin transporter RFVT3 encoded by
SLC52A3
gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance
in vivo
remain unclear. Here, we investigated the physiological role of RFVT3 using
Slc52a3
knockout (
Slc52a3
−/−) mice. Most
Slc52a3
−/− mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in
Slc52a3
−/− mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates.
Slc52a3
−/− fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of
Slc52a3
gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep27557</identifier><identifier>PMID: 27272163</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 42 ; 42/41 ; 49 ; 64 ; 64/60 ; 692/308/1426 ; 692/699/1702/295 ; 82 ; Animals ; Animals, Newborn - genetics ; Drinking water ; Fatty acids ; Female ; Fetuses ; Homeostasis ; Humanities and Social Sciences ; Humans ; Hyperlipidemias - genetics ; Hyperlipidemias - mortality ; Hyperlipidemias - pathology ; Hypoglycemia - genetics ; Hypoglycemia - mortality ; Hypoglycemia - pathology ; Membrane Transport Proteins - genetics ; Metabolic disorders ; Metabolism ; Mice ; Mice, Knockout ; multidisciplinary ; Neonates ; Placenta ; Placenta - metabolism ; Placenta - pathology ; Plasma ; Pregnancy ; Riboflavin - blood ; Riboflavin - genetics ; Riboflavin Deficiency - genetics ; Riboflavin Deficiency - mortality ; Riboflavin Deficiency - pathology ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2016-06, Vol.6 (1), p.27557-27557, Article 27557</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-40cad08bf3f03a607505ceffc88ee58a916a5cbb450c0c16f1172c44b9218dff3</citedby><cites>FETCH-LOGICAL-c482t-40cad08bf3f03a607505ceffc88ee58a916a5cbb450c0c16f1172c44b9218dff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897618/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897618/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27272163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshimatsu, Hiroki</creatorcontrib><creatorcontrib>Yonezawa, Atsushi</creatorcontrib><creatorcontrib>Yamanishi, Kaori</creatorcontrib><creatorcontrib>Yao, Yoshiaki</creatorcontrib><creatorcontrib>Sugano, Kumiko</creatorcontrib><creatorcontrib>Nakagawa, Shunsaku</creatorcontrib><creatorcontrib>Imai, Satoshi</creatorcontrib><creatorcontrib>Omura, Tomohiro</creatorcontrib><creatorcontrib>Nakagawa, Takayuki</creatorcontrib><creatorcontrib>Yano, Ikuko</creatorcontrib><creatorcontrib>Masuda, Satohiro</creatorcontrib><creatorcontrib>Inui, Ken-ichi</creatorcontrib><creatorcontrib>Matsubara, Kazuo</creatorcontrib><title>Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Homeostasis of riboflavin should be maintained by transporters. Previous
in vitro
studies have elucidated basic information about riboflavin transporter RFVT3 encoded by
SLC52A3
gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance
in vivo
remain unclear. Here, we investigated the physiological role of RFVT3 using
Slc52a3
knockout (
Slc52a3
−/−) mice. Most
Slc52a3
−/− mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in
Slc52a3
−/− mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates.
Slc52a3
−/− fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of
Slc52a3
gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency.</description><subject>13</subject><subject>42</subject><subject>42/41</subject><subject>49</subject><subject>64</subject><subject>64/60</subject><subject>692/308/1426</subject><subject>692/699/1702/295</subject><subject>82</subject><subject>Animals</subject><subject>Animals, Newborn - genetics</subject><subject>Drinking water</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Fetuses</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hyperlipidemias - genetics</subject><subject>Hyperlipidemias - mortality</subject><subject>Hyperlipidemias - pathology</subject><subject>Hypoglycemia - genetics</subject><subject>Hypoglycemia - mortality</subject><subject>Hypoglycemia - pathology</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Neonates</subject><subject>Placenta</subject><subject>Placenta - metabolism</subject><subject>Placenta - pathology</subject><subject>Plasma</subject><subject>Pregnancy</subject><subject>Riboflavin - blood</subject><subject>Riboflavin - genetics</subject><subject>Riboflavin Deficiency - genetics</subject><subject>Riboflavin Deficiency - mortality</subject><subject>Riboflavin Deficiency - pathology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU9rVDEUxYNUbKld9AtIwE0tjObvS95GKNWqUHBhS5chL3Mzk5JJpsl7lfn2pkwdppq7SC73x8m5HIROKflICdefaoE1U1KqV-iIESFnjDN2sPc-RCe13pN2JOsF7d-gQ6Za0Y4fobsvoZZpPYaccPb4V3SSWY4XkAA7O1WoOEFOdrQRRxiXNoZxg3-HcYlLGLKP9jEkPAcfXIDkNrh1q-DgLXrtbaxw8nwfo9urrzeX32fXP7_9uLy4njmh2TgTxNk50YPnnnDbESWJdOC90xpAatvTzko3DEISRxztPKWKOSGGnlE9954fo89b3fU0rGDuII3FRrMuYWXLxmQbzMtJCkuzyI9G6F51VDeBs2eBkh8mqKNZheogRtv2nqqhqpdaqY73DX3_D3qfp5Laek-U6Jt7rhr1YUu5kmsLx-_MUGKeEjO7xBr7bt_9jvybTwPOt0Bto7SAsvflf2p_AHX6oKQ</recordid><startdate>20160608</startdate><enddate>20160608</enddate><creator>Yoshimatsu, Hiroki</creator><creator>Yonezawa, Atsushi</creator><creator>Yamanishi, Kaori</creator><creator>Yao, Yoshiaki</creator><creator>Sugano, Kumiko</creator><creator>Nakagawa, Shunsaku</creator><creator>Imai, Satoshi</creator><creator>Omura, Tomohiro</creator><creator>Nakagawa, Takayuki</creator><creator>Yano, Ikuko</creator><creator>Masuda, Satohiro</creator><creator>Inui, Ken-ichi</creator><creator>Matsubara, Kazuo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160608</creationdate><title>Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice</title><author>Yoshimatsu, Hiroki ; Yonezawa, Atsushi ; Yamanishi, Kaori ; Yao, Yoshiaki ; Sugano, Kumiko ; Nakagawa, Shunsaku ; Imai, Satoshi ; Omura, Tomohiro ; Nakagawa, Takayuki ; Yano, Ikuko ; Masuda, Satohiro ; Inui, Ken-ichi ; Matsubara, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-40cad08bf3f03a607505ceffc88ee58a916a5cbb450c0c16f1172c44b9218dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13</topic><topic>42</topic><topic>42/41</topic><topic>49</topic><topic>64</topic><topic>64/60</topic><topic>692/308/1426</topic><topic>692/699/1702/295</topic><topic>82</topic><topic>Animals</topic><topic>Animals, Newborn - genetics</topic><topic>Drinking water</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Fetuses</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hyperlipidemias - genetics</topic><topic>Hyperlipidemias - mortality</topic><topic>Hyperlipidemias - pathology</topic><topic>Hypoglycemia - genetics</topic><topic>Hypoglycemia - mortality</topic><topic>Hypoglycemia - pathology</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Neonates</topic><topic>Placenta</topic><topic>Placenta - metabolism</topic><topic>Placenta - pathology</topic><topic>Plasma</topic><topic>Pregnancy</topic><topic>Riboflavin - blood</topic><topic>Riboflavin - genetics</topic><topic>Riboflavin Deficiency - genetics</topic><topic>Riboflavin Deficiency - mortality</topic><topic>Riboflavin Deficiency - pathology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshimatsu, Hiroki</creatorcontrib><creatorcontrib>Yonezawa, Atsushi</creatorcontrib><creatorcontrib>Yamanishi, Kaori</creatorcontrib><creatorcontrib>Yao, Yoshiaki</creatorcontrib><creatorcontrib>Sugano, Kumiko</creatorcontrib><creatorcontrib>Nakagawa, Shunsaku</creatorcontrib><creatorcontrib>Imai, Satoshi</creatorcontrib><creatorcontrib>Omura, Tomohiro</creatorcontrib><creatorcontrib>Nakagawa, Takayuki</creatorcontrib><creatorcontrib>Yano, Ikuko</creatorcontrib><creatorcontrib>Masuda, Satohiro</creatorcontrib><creatorcontrib>Inui, Ken-ichi</creatorcontrib><creatorcontrib>Matsubara, Kazuo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshimatsu, Hiroki</au><au>Yonezawa, Atsushi</au><au>Yamanishi, Kaori</au><au>Yao, Yoshiaki</au><au>Sugano, Kumiko</au><au>Nakagawa, Shunsaku</au><au>Imai, Satoshi</au><au>Omura, Tomohiro</au><au>Nakagawa, Takayuki</au><au>Yano, Ikuko</au><au>Masuda, Satohiro</au><au>Inui, Ken-ichi</au><au>Matsubara, Kazuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-06-08</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>27557</spage><epage>27557</epage><pages>27557-27557</pages><artnum>27557</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Homeostasis of riboflavin should be maintained by transporters. Previous
in vitro
studies have elucidated basic information about riboflavin transporter RFVT3 encoded by
SLC52A3
gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance
in vivo
remain unclear. Here, we investigated the physiological role of RFVT3 using
Slc52a3
knockout (
Slc52a3
−/−) mice. Most
Slc52a3
−/− mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in
Slc52a3
−/− mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates.
Slc52a3
−/− fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of
Slc52a3
gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27272163</pmid><doi>10.1038/srep27557</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-06, Vol.6 (1), p.27557-27557, Article 27557 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4897618 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 13 42 42/41 49 64 64/60 692/308/1426 692/699/1702/295 82 Animals Animals, Newborn - genetics Drinking water Fatty acids Female Fetuses Homeostasis Humanities and Social Sciences Humans Hyperlipidemias - genetics Hyperlipidemias - mortality Hyperlipidemias - pathology Hypoglycemia - genetics Hypoglycemia - mortality Hypoglycemia - pathology Membrane Transport Proteins - genetics Metabolic disorders Metabolism Mice Mice, Knockout multidisciplinary Neonates Placenta Placenta - metabolism Placenta - pathology Plasma Pregnancy Riboflavin - blood Riboflavin - genetics Riboflavin Deficiency - genetics Riboflavin Deficiency - mortality Riboflavin Deficiency - pathology Science Science (multidisciplinary) |
title | Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20of%20Slc52a3%20gene%20causes%20neonatal%20lethality%20with%20riboflavin%20deficiency%20in%20mice&rft.jtitle=Scientific%20reports&rft.au=Yoshimatsu,%20Hiroki&rft.date=2016-06-08&rft.volume=6&rft.issue=1&rft.spage=27557&rft.epage=27557&rft.pages=27557-27557&rft.artnum=27557&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep27557&rft_dat=%3Cproquest_pubme%3E4082656091%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1794907537&rft_id=info:pmid/27272163&rfr_iscdi=true |