S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3
Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-05, Vol.113 (22), p.6182-6187 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6187 |
---|---|
container_issue | 22 |
container_start_page | 6182 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Jayaram, Hariharan Hoelper, Dominik Jain, Siddhant U. Cantone, Nico Lundgren, Stefan M. Poy, Florence Allis, C. David Cummings, Richard Bellon, Steven Lewis, Peter W. |
description | Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases. |
doi_str_mv | 10.1073/pnas.1605523113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4896705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26470048</jstor_id><sourcerecordid>26470048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-5c5efcf3ff074c4012101f39559d6489f63a1dbb13570aee9a073119bc00b31f3</originalsourceid><addsrcrecordid>eNqFkrFv1DAYxS0EokdhZgJZsLCk_b44TuKlEqqgRarEAMyW47OJTzn7iB2kzPzjOJfSFhYmS34_P_t7foS8RDhDaNj5wat4hjVwXjJE9ohsEAQWdSXgMdkAlE3RVmV1Qp7FuAMAwVt4Sk7KBlsuKtiQX18KtTU-xHmge5N6F7zzhrpIvdEmRjXO1IaROt-7zqUs02Bp6s2Rnoc0Kh-tGVU09Eoo2s1HcZjjYiNoCg9t91NSq4envYsp5L1r9pw8sWqI5sXtekq-ffzw9fK6uPl89eny_U2hObBUcM2N1ZZZC02lK8ASAS0TnIttXbXC1kzhtuuQ8QaUMULlhBBFpwE6lslTcrH6HqZub7ba-Pz6QR5Gt89jyqCc_Fvxrpffw0-ZzesGeDZ4sxqEmJyM2iWjex18jipJLHlbN5ihd7e3jOHHZGKSexe1GQblTZiixBaxFZUQ4v9oIxivG368-u0_6C5Mo89xLVTNMEOL4flK6THEOBp7NxyCXAojl8LI-8LkE68fZnLH_2lIBl6twC5_13iv11UDULXsNzLoxtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796315059</pqid></control><display><type>article</type><title>S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jayaram, Hariharan ; Hoelper, Dominik ; Jain, Siddhant U. ; Cantone, Nico ; Lundgren, Stefan M. ; Poy, Florence ; Allis, C. David ; Cummings, Richard ; Bellon, Steven ; Lewis, Peter W.</creator><creatorcontrib>Jayaram, Hariharan ; Hoelper, Dominik ; Jain, Siddhant U. ; Cantone, Nico ; Lundgren, Stefan M. ; Poy, Florence ; Allis, C. David ; Cummings, Richard ; Bellon, Steven ; Lewis, Peter W. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1605523113</identifier><identifier>PMID: 27185940</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Biological Sciences ; Crystallography, X-Ray ; DNA methylation ; EHMT2 ; G9a ; Genes ; H3K9me3 ; Histone-Lysine N-Methyltransferase - antagonists & inhibitors ; Histone-Lysine N-Methyltransferase - genetics ; Histones - chemistry ; Histones - genetics ; Humans ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; K to M ; Kinetics ; Lysine - chemistry ; Lysine - genetics ; Methionine - chemistry ; Methionine - genetics ; Mutation ; Mutation - genetics ; oncohistone ; Peptide Fragments - chemistry ; S-Adenosylmethionine - pharmacology ; Substrate Specificity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-05, Vol.113 (22), p.6182-6187</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences May 31, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-5c5efcf3ff074c4012101f39559d6489f63a1dbb13570aee9a073119bc00b31f3</citedby><cites>FETCH-LOGICAL-c503t-5c5efcf3ff074c4012101f39559d6489f63a1dbb13570aee9a073119bc00b31f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26470048$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26470048$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27185940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1258671$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayaram, Hariharan</creatorcontrib><creatorcontrib>Hoelper, Dominik</creatorcontrib><creatorcontrib>Jain, Siddhant U.</creatorcontrib><creatorcontrib>Cantone, Nico</creatorcontrib><creatorcontrib>Lundgren, Stefan M.</creatorcontrib><creatorcontrib>Poy, Florence</creatorcontrib><creatorcontrib>Allis, C. David</creatorcontrib><creatorcontrib>Cummings, Richard</creatorcontrib><creatorcontrib>Bellon, Steven</creatorcontrib><creatorcontrib>Lewis, Peter W.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases.</description><subject>Amino acids</subject><subject>Biological Sciences</subject><subject>Crystallography, X-Ray</subject><subject>DNA methylation</subject><subject>EHMT2</subject><subject>G9a</subject><subject>Genes</subject><subject>H3K9me3</subject><subject>Histone-Lysine N-Methyltransferase - antagonists & inhibitors</subject><subject>Histone-Lysine N-Methyltransferase - genetics</subject><subject>Histones - chemistry</subject><subject>Histones - genetics</subject><subject>Humans</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>K to M</subject><subject>Kinetics</subject><subject>Lysine - chemistry</subject><subject>Lysine - genetics</subject><subject>Methionine - chemistry</subject><subject>Methionine - genetics</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>oncohistone</subject><subject>Peptide Fragments - chemistry</subject><subject>S-Adenosylmethionine - pharmacology</subject><subject>Substrate Specificity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkrFv1DAYxS0EokdhZgJZsLCk_b44TuKlEqqgRarEAMyW47OJTzn7iB2kzPzjOJfSFhYmS34_P_t7foS8RDhDaNj5wat4hjVwXjJE9ohsEAQWdSXgMdkAlE3RVmV1Qp7FuAMAwVt4Sk7KBlsuKtiQX18KtTU-xHmge5N6F7zzhrpIvdEmRjXO1IaROt-7zqUs02Bp6s2Rnoc0Kh-tGVU09Eoo2s1HcZjjYiNoCg9t91NSq4envYsp5L1r9pw8sWqI5sXtekq-ffzw9fK6uPl89eny_U2hObBUcM2N1ZZZC02lK8ASAS0TnIttXbXC1kzhtuuQ8QaUMULlhBBFpwE6lslTcrH6HqZub7ba-Pz6QR5Gt89jyqCc_Fvxrpffw0-ZzesGeDZ4sxqEmJyM2iWjex18jipJLHlbN5ihd7e3jOHHZGKSexe1GQblTZiixBaxFZUQ4v9oIxivG368-u0_6C5Mo89xLVTNMEOL4flK6THEOBp7NxyCXAojl8LI-8LkE68fZnLH_2lIBl6twC5_13iv11UDULXsNzLoxtA</recordid><startdate>20160531</startdate><enddate>20160531</enddate><creator>Jayaram, Hariharan</creator><creator>Hoelper, Dominik</creator><creator>Jain, Siddhant U.</creator><creator>Cantone, Nico</creator><creator>Lundgren, Stefan M.</creator><creator>Poy, Florence</creator><creator>Allis, C. David</creator><creator>Cummings, Richard</creator><creator>Bellon, Steven</creator><creator>Lewis, Peter W.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160531</creationdate><title>S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3</title><author>Jayaram, Hariharan ; Hoelper, Dominik ; Jain, Siddhant U. ; Cantone, Nico ; Lundgren, Stefan M. ; Poy, Florence ; Allis, C. David ; Cummings, Richard ; Bellon, Steven ; Lewis, Peter W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-5c5efcf3ff074c4012101f39559d6489f63a1dbb13570aee9a073119bc00b31f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino acids</topic><topic>Biological Sciences</topic><topic>Crystallography, X-Ray</topic><topic>DNA methylation</topic><topic>EHMT2</topic><topic>G9a</topic><topic>Genes</topic><topic>H3K9me3</topic><topic>Histone-Lysine N-Methyltransferase - antagonists & inhibitors</topic><topic>Histone-Lysine N-Methyltransferase - genetics</topic><topic>Histones - chemistry</topic><topic>Histones - genetics</topic><topic>Humans</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>K to M</topic><topic>Kinetics</topic><topic>Lysine - chemistry</topic><topic>Lysine - genetics</topic><topic>Methionine - chemistry</topic><topic>Methionine - genetics</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>oncohistone</topic><topic>Peptide Fragments - chemistry</topic><topic>S-Adenosylmethionine - pharmacology</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayaram, Hariharan</creatorcontrib><creatorcontrib>Hoelper, Dominik</creatorcontrib><creatorcontrib>Jain, Siddhant U.</creatorcontrib><creatorcontrib>Cantone, Nico</creatorcontrib><creatorcontrib>Lundgren, Stefan M.</creatorcontrib><creatorcontrib>Poy, Florence</creatorcontrib><creatorcontrib>Allis, C. David</creatorcontrib><creatorcontrib>Cummings, Richard</creatorcontrib><creatorcontrib>Bellon, Steven</creatorcontrib><creatorcontrib>Lewis, Peter W.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayaram, Hariharan</au><au>Hoelper, Dominik</au><au>Jain, Siddhant U.</au><au>Cantone, Nico</au><au>Lundgren, Stefan M.</au><au>Poy, Florence</au><au>Allis, C. David</au><au>Cummings, Richard</au><au>Bellon, Steven</au><au>Lewis, Peter W.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-05-31</date><risdate>2016</risdate><volume>113</volume><issue>22</issue><spage>6182</spage><epage>6187</epage><pages>6182-6187</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27185940</pmid><doi>10.1073/pnas.1605523113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-05, Vol.113 (22), p.6182-6187 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4896705 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino acids Biological Sciences Crystallography, X-Ray DNA methylation EHMT2 G9a Genes H3K9me3 Histone-Lysine N-Methyltransferase - antagonists & inhibitors Histone-Lysine N-Methyltransferase - genetics Histones - chemistry Histones - genetics Humans INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY K to M Kinetics Lysine - chemistry Lysine - genetics Methionine - chemistry Methionine - genetics Mutation Mutation - genetics oncohistone Peptide Fragments - chemistry S-Adenosylmethionine - pharmacology Substrate Specificity |
title | S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S-adenosyl%20methionine%20is%20necessary%20for%20inhibition%20of%20the%20methyltransferase%20G9a%20by%20the%20lysine%209%20to%20methionine%20mutation%20on%20histone%20H3&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jayaram,%20Hariharan&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2016-05-31&rft.volume=113&rft.issue=22&rft.spage=6182&rft.epage=6187&rft.pages=6182-6187&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1605523113&rft_dat=%3Cjstor_pubme%3E26470048%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1796315059&rft_id=info:pmid/27185940&rft_jstor_id=26470048&rfr_iscdi=true |