S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3

Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-05, Vol.113 (22), p.6182-6187
Hauptverfasser: Jayaram, Hariharan, Hoelper, Dominik, Jain, Siddhant U., Cantone, Nico, Lundgren, Stefan M., Poy, Florence, Allis, C. David, Cummings, Richard, Bellon, Steven, Lewis, Peter W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6187
container_issue 22
container_start_page 6182
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Jayaram, Hariharan
Hoelper, Dominik
Jain, Siddhant U.
Cantone, Nico
Lundgren, Stefan M.
Poy, Florence
Allis, C. David
Cummings, Richard
Bellon, Steven
Lewis, Peter W.
description Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases.
doi_str_mv 10.1073/pnas.1605523113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4896705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26470048</jstor_id><sourcerecordid>26470048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-5c5efcf3ff074c4012101f39559d6489f63a1dbb13570aee9a073119bc00b31f3</originalsourceid><addsrcrecordid>eNqFkrFv1DAYxS0EokdhZgJZsLCk_b44TuKlEqqgRarEAMyW47OJTzn7iB2kzPzjOJfSFhYmS34_P_t7foS8RDhDaNj5wat4hjVwXjJE9ohsEAQWdSXgMdkAlE3RVmV1Qp7FuAMAwVt4Sk7KBlsuKtiQX18KtTU-xHmge5N6F7zzhrpIvdEmRjXO1IaROt-7zqUs02Bp6s2Rnoc0Kh-tGVU09Eoo2s1HcZjjYiNoCg9t91NSq4envYsp5L1r9pw8sWqI5sXtekq-ffzw9fK6uPl89eny_U2hObBUcM2N1ZZZC02lK8ASAS0TnIttXbXC1kzhtuuQ8QaUMULlhBBFpwE6lslTcrH6HqZub7ba-Pz6QR5Gt89jyqCc_Fvxrpffw0-ZzesGeDZ4sxqEmJyM2iWjex18jipJLHlbN5ihd7e3jOHHZGKSexe1GQblTZiixBaxFZUQ4v9oIxivG368-u0_6C5Mo89xLVTNMEOL4flK6THEOBp7NxyCXAojl8LI-8LkE68fZnLH_2lIBl6twC5_13iv11UDULXsNzLoxtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796315059</pqid></control><display><type>article</type><title>S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jayaram, Hariharan ; Hoelper, Dominik ; Jain, Siddhant U. ; Cantone, Nico ; Lundgren, Stefan M. ; Poy, Florence ; Allis, C. David ; Cummings, Richard ; Bellon, Steven ; Lewis, Peter W.</creator><creatorcontrib>Jayaram, Hariharan ; Hoelper, Dominik ; Jain, Siddhant U. ; Cantone, Nico ; Lundgren, Stefan M. ; Poy, Florence ; Allis, C. David ; Cummings, Richard ; Bellon, Steven ; Lewis, Peter W. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1605523113</identifier><identifier>PMID: 27185940</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Biological Sciences ; Crystallography, X-Ray ; DNA methylation ; EHMT2 ; G9a ; Genes ; H3K9me3 ; Histone-Lysine N-Methyltransferase - antagonists &amp; inhibitors ; Histone-Lysine N-Methyltransferase - genetics ; Histones - chemistry ; Histones - genetics ; Humans ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; K to M ; Kinetics ; Lysine - chemistry ; Lysine - genetics ; Methionine - chemistry ; Methionine - genetics ; Mutation ; Mutation - genetics ; oncohistone ; Peptide Fragments - chemistry ; S-Adenosylmethionine - pharmacology ; Substrate Specificity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-05, Vol.113 (22), p.6182-6187</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences May 31, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-5c5efcf3ff074c4012101f39559d6489f63a1dbb13570aee9a073119bc00b31f3</citedby><cites>FETCH-LOGICAL-c503t-5c5efcf3ff074c4012101f39559d6489f63a1dbb13570aee9a073119bc00b31f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26470048$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26470048$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27185940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1258671$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayaram, Hariharan</creatorcontrib><creatorcontrib>Hoelper, Dominik</creatorcontrib><creatorcontrib>Jain, Siddhant U.</creatorcontrib><creatorcontrib>Cantone, Nico</creatorcontrib><creatorcontrib>Lundgren, Stefan M.</creatorcontrib><creatorcontrib>Poy, Florence</creatorcontrib><creatorcontrib>Allis, C. David</creatorcontrib><creatorcontrib>Cummings, Richard</creatorcontrib><creatorcontrib>Bellon, Steven</creatorcontrib><creatorcontrib>Lewis, Peter W.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases.</description><subject>Amino acids</subject><subject>Biological Sciences</subject><subject>Crystallography, X-Ray</subject><subject>DNA methylation</subject><subject>EHMT2</subject><subject>G9a</subject><subject>Genes</subject><subject>H3K9me3</subject><subject>Histone-Lysine N-Methyltransferase - antagonists &amp; inhibitors</subject><subject>Histone-Lysine N-Methyltransferase - genetics</subject><subject>Histones - chemistry</subject><subject>Histones - genetics</subject><subject>Humans</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>K to M</subject><subject>Kinetics</subject><subject>Lysine - chemistry</subject><subject>Lysine - genetics</subject><subject>Methionine - chemistry</subject><subject>Methionine - genetics</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>oncohistone</subject><subject>Peptide Fragments - chemistry</subject><subject>S-Adenosylmethionine - pharmacology</subject><subject>Substrate Specificity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkrFv1DAYxS0EokdhZgJZsLCk_b44TuKlEqqgRarEAMyW47OJTzn7iB2kzPzjOJfSFhYmS34_P_t7foS8RDhDaNj5wat4hjVwXjJE9ohsEAQWdSXgMdkAlE3RVmV1Qp7FuAMAwVt4Sk7KBlsuKtiQX18KtTU-xHmge5N6F7zzhrpIvdEmRjXO1IaROt-7zqUs02Bp6s2Rnoc0Kh-tGVU09Eoo2s1HcZjjYiNoCg9t91NSq4envYsp5L1r9pw8sWqI5sXtekq-ffzw9fK6uPl89eny_U2hObBUcM2N1ZZZC02lK8ASAS0TnIttXbXC1kzhtuuQ8QaUMULlhBBFpwE6lslTcrH6HqZub7ba-Pz6QR5Gt89jyqCc_Fvxrpffw0-ZzesGeDZ4sxqEmJyM2iWjex18jipJLHlbN5ihd7e3jOHHZGKSexe1GQblTZiixBaxFZUQ4v9oIxivG368-u0_6C5Mo89xLVTNMEOL4flK6THEOBp7NxyCXAojl8LI-8LkE68fZnLH_2lIBl6twC5_13iv11UDULXsNzLoxtA</recordid><startdate>20160531</startdate><enddate>20160531</enddate><creator>Jayaram, Hariharan</creator><creator>Hoelper, Dominik</creator><creator>Jain, Siddhant U.</creator><creator>Cantone, Nico</creator><creator>Lundgren, Stefan M.</creator><creator>Poy, Florence</creator><creator>Allis, C. David</creator><creator>Cummings, Richard</creator><creator>Bellon, Steven</creator><creator>Lewis, Peter W.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160531</creationdate><title>S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3</title><author>Jayaram, Hariharan ; Hoelper, Dominik ; Jain, Siddhant U. ; Cantone, Nico ; Lundgren, Stefan M. ; Poy, Florence ; Allis, C. David ; Cummings, Richard ; Bellon, Steven ; Lewis, Peter W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-5c5efcf3ff074c4012101f39559d6489f63a1dbb13570aee9a073119bc00b31f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino acids</topic><topic>Biological Sciences</topic><topic>Crystallography, X-Ray</topic><topic>DNA methylation</topic><topic>EHMT2</topic><topic>G9a</topic><topic>Genes</topic><topic>H3K9me3</topic><topic>Histone-Lysine N-Methyltransferase - antagonists &amp; inhibitors</topic><topic>Histone-Lysine N-Methyltransferase - genetics</topic><topic>Histones - chemistry</topic><topic>Histones - genetics</topic><topic>Humans</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>K to M</topic><topic>Kinetics</topic><topic>Lysine - chemistry</topic><topic>Lysine - genetics</topic><topic>Methionine - chemistry</topic><topic>Methionine - genetics</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>oncohistone</topic><topic>Peptide Fragments - chemistry</topic><topic>S-Adenosylmethionine - pharmacology</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayaram, Hariharan</creatorcontrib><creatorcontrib>Hoelper, Dominik</creatorcontrib><creatorcontrib>Jain, Siddhant U.</creatorcontrib><creatorcontrib>Cantone, Nico</creatorcontrib><creatorcontrib>Lundgren, Stefan M.</creatorcontrib><creatorcontrib>Poy, Florence</creatorcontrib><creatorcontrib>Allis, C. David</creatorcontrib><creatorcontrib>Cummings, Richard</creatorcontrib><creatorcontrib>Bellon, Steven</creatorcontrib><creatorcontrib>Lewis, Peter W.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayaram, Hariharan</au><au>Hoelper, Dominik</au><au>Jain, Siddhant U.</au><au>Cantone, Nico</au><au>Lundgren, Stefan M.</au><au>Poy, Florence</au><au>Allis, C. David</au><au>Cummings, Richard</au><au>Bellon, Steven</au><au>Lewis, Peter W.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-05-31</date><risdate>2016</risdate><volume>113</volume><issue>22</issue><spage>6182</spage><epage>6187</epage><pages>6182-6187</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27185940</pmid><doi>10.1073/pnas.1605523113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-05, Vol.113 (22), p.6182-6187
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4896705
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acids
Biological Sciences
Crystallography, X-Ray
DNA methylation
EHMT2
G9a
Genes
H3K9me3
Histone-Lysine N-Methyltransferase - antagonists & inhibitors
Histone-Lysine N-Methyltransferase - genetics
Histones - chemistry
Histones - genetics
Humans
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
K to M
Kinetics
Lysine - chemistry
Lysine - genetics
Methionine - chemistry
Methionine - genetics
Mutation
Mutation - genetics
oncohistone
Peptide Fragments - chemistry
S-Adenosylmethionine - pharmacology
Substrate Specificity
title S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S-adenosyl%20methionine%20is%20necessary%20for%20inhibition%20of%20the%20methyltransferase%20G9a%20by%20the%20lysine%209%20to%20methionine%20mutation%20on%20histone%20H3&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jayaram,%20Hariharan&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2016-05-31&rft.volume=113&rft.issue=22&rft.spage=6182&rft.epage=6187&rft.pages=6182-6187&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1605523113&rft_dat=%3Cjstor_pubme%3E26470048%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1796315059&rft_id=info:pmid/27185940&rft_jstor_id=26470048&rfr_iscdi=true