Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures

Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS 2 ), is of great interest from the standpoint of fundame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-06, Vol.6 (1), p.26656, Article 26656
Hauptverfasser: Pierucci, Debora, Henck, Hugo, Naylor, Carl H., Sediri, Haikel, Lhuillier, Emmanuel, Balan, Adrian, Rault, Julien E., Dappe, Yannick J., Bertran, François, Fèvre, Patrick Le, Johnson, A. T. Charlie, Ouerghi, Abdelkarim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS 2 ), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS 2 -graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS 2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS 2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A 1g peak of MoS 2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS 2 as a result of charge transfer from MoS 2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep26656