Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions
Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-07, Vol.5 (1), p.12401-12401, Article 12401 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12401 |
---|---|
container_issue | 1 |
container_start_page | 12401 |
container_title | Scientific reports |
container_volume | 5 |
creator | Mannino, Robert G. Myers, David R. Ahn, Byungwook Wang, Yichen Margo Rollins Gole, Hope Lin, Angela S. Guldberg, Robert E. Giddens, Don P. Timmins, Lucas H. Lam, Wilbur A. |
description | Investigating biophysical cellular interactions in the circulation currently requires choosing between
in vivo
models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or
in vitro
systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an
in vitro
“do-it-yourself” perfusable vasculature model that recapitulates
in vivo
geometries, such as aneurysms, stenoses and bifurcations and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly ( |
doi_str_mv | 10.1038/srep12401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4894411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1699490372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a25f24af623872d2c46a8871b75859be323840928b43d9d2385a2cca894b47b13</originalsourceid><addsrcrecordid>eNplkcFvFCEUxonR2Kb24D9gJvGiTUbhATNwMWmqVZMmXvRMGIaZpWFhBWaSnvzXZbN1syoX4Hu_fLzHh9BLgt8RTMX7nOyOAMPkCToHzHgLFODpyfkMXeZ8j-viIBmRz9EZdIChw_Qc_foYW1fah7ikbP3UuNCsrqTYrDqbxeuyJNuUjS5NskbvXNlrNh-4NTazjVtbkqvSFFOVV5uLm3VxYW5sGGPZWO-0bwcf49gY632Fik3aFBdDfoGeTdpne_m4X6Aft5--33xp7759_npzfdcaRkVpNfAJmJ46oKKHEQzrtBA9GXouuBwsrTrDEsTA6CjHeuMajNFCsoH1A6EX6MPBd7cMWzsaG0rSXu2S2-r0oKJ26u9KcBs1x1WxasHI3uDNo0GKP5c6pNq6vB9HBxuXrEgnJZOY9lDR1_-g9_V7Qx1PESEl74ADr9TbA2VSzDXE6dgMwWqfrDomW9lXp90fyT85VuDqAORaCrNNJ0_-5_Yb1bevwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899562525</pqid></control><display><type>article</type><title>Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mannino, Robert G. ; Myers, David R. ; Ahn, Byungwook ; Wang, Yichen ; Margo Rollins ; Gole, Hope ; Lin, Angela S. ; Guldberg, Robert E. ; Giddens, Don P. ; Timmins, Lucas H. ; Lam, Wilbur A.</creator><creatorcontrib>Mannino, Robert G. ; Myers, David R. ; Ahn, Byungwook ; Wang, Yichen ; Margo Rollins ; Gole, Hope ; Lin, Angela S. ; Guldberg, Robert E. ; Giddens, Don P. ; Timmins, Lucas H. ; Lam, Wilbur A.</creatorcontrib><description>Investigating biophysical cellular interactions in the circulation currently requires choosing between
in vivo
models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or
in vitro
systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an
in vitro
“do-it-yourself” perfusable vasculature model that recapitulates
in vivo
geometries, such as aneurysms, stenoses and bifurcations and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make,
in vitro
vasculature models.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep12401</identifier><identifier>PMID: 26202603</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/62 ; 13/106 ; 14/1 ; 14/34 ; 631/1647/767/1657 ; 639/166/985 ; Adhesion ; Biomimetics - instrumentation ; Blood Flow Velocity - physiology ; Blood Vessels - cytology ; Blood Vessels - physiology ; Cell adhesion & migration ; Cell adhesion molecules ; Cell Communication - physiology ; Cell culture ; Cell interactions ; Cells, Cultured ; Coculture Techniques ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - physiology ; Equipment Design ; Equipment Failure Analysis ; Erythrocytes ; Erythrocytes - physiology ; Humanities and Social Sciences ; Humans ; Lab-On-A-Chip Devices ; Mechanical stimuli ; multidisciplinary ; Science ; Shear stress ; Sickle cell disease ; Studies ; Vascular cell adhesion molecule 1</subject><ispartof>Scientific reports, 2015-07, Vol.5 (1), p.12401-12401, Article 12401</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a25f24af623872d2c46a8871b75859be323840928b43d9d2385a2cca894b47b13</citedby><cites>FETCH-LOGICAL-c438t-a25f24af623872d2c46a8871b75859be323840928b43d9d2385a2cca894b47b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894411/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894411/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26202603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannino, Robert G.</creatorcontrib><creatorcontrib>Myers, David R.</creatorcontrib><creatorcontrib>Ahn, Byungwook</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><creatorcontrib>Margo Rollins</creatorcontrib><creatorcontrib>Gole, Hope</creatorcontrib><creatorcontrib>Lin, Angela S.</creatorcontrib><creatorcontrib>Guldberg, Robert E.</creatorcontrib><creatorcontrib>Giddens, Don P.</creatorcontrib><creatorcontrib>Timmins, Lucas H.</creatorcontrib><creatorcontrib>Lam, Wilbur A.</creatorcontrib><title>Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Investigating biophysical cellular interactions in the circulation currently requires choosing between
in vivo
models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or
in vitro
systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an
in vitro
“do-it-yourself” perfusable vasculature model that recapitulates
in vivo
geometries, such as aneurysms, stenoses and bifurcations and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make,
in vitro
vasculature models.</description><subject>101/62</subject><subject>13/106</subject><subject>14/1</subject><subject>14/34</subject><subject>631/1647/767/1657</subject><subject>639/166/985</subject><subject>Adhesion</subject><subject>Biomimetics - instrumentation</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Vessels - cytology</subject><subject>Blood Vessels - physiology</subject><subject>Cell adhesion & migration</subject><subject>Cell adhesion molecules</subject><subject>Cell Communication - physiology</subject><subject>Cell culture</subject><subject>Cell interactions</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - physiology</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Erythrocytes</subject><subject>Erythrocytes - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lab-On-A-Chip Devices</subject><subject>Mechanical stimuli</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Shear stress</subject><subject>Sickle cell disease</subject><subject>Studies</subject><subject>Vascular cell adhesion molecule 1</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkcFvFCEUxonR2Kb24D9gJvGiTUbhATNwMWmqVZMmXvRMGIaZpWFhBWaSnvzXZbN1syoX4Hu_fLzHh9BLgt8RTMX7nOyOAMPkCToHzHgLFODpyfkMXeZ8j-viIBmRz9EZdIChw_Qc_foYW1fah7ikbP3UuNCsrqTYrDqbxeuyJNuUjS5NskbvXNlrNh-4NTazjVtbkqvSFFOVV5uLm3VxYW5sGGPZWO-0bwcf49gY632Fik3aFBdDfoGeTdpne_m4X6Aft5--33xp7759_npzfdcaRkVpNfAJmJ46oKKHEQzrtBA9GXouuBwsrTrDEsTA6CjHeuMajNFCsoH1A6EX6MPBd7cMWzsaG0rSXu2S2-r0oKJ26u9KcBs1x1WxasHI3uDNo0GKP5c6pNq6vB9HBxuXrEgnJZOY9lDR1_-g9_V7Qx1PESEl74ADr9TbA2VSzDXE6dgMwWqfrDomW9lXp90fyT85VuDqAORaCrNNJ0_-5_Yb1bevwA</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Mannino, Robert G.</creator><creator>Myers, David R.</creator><creator>Ahn, Byungwook</creator><creator>Wang, Yichen</creator><creator>Margo Rollins</creator><creator>Gole, Hope</creator><creator>Lin, Angela S.</creator><creator>Guldberg, Robert E.</creator><creator>Giddens, Don P.</creator><creator>Timmins, Lucas H.</creator><creator>Lam, Wilbur A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150723</creationdate><title>Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions</title><author>Mannino, Robert G. ; Myers, David R. ; Ahn, Byungwook ; Wang, Yichen ; Margo Rollins ; Gole, Hope ; Lin, Angela S. ; Guldberg, Robert E. ; Giddens, Don P. ; Timmins, Lucas H. ; Lam, Wilbur A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a25f24af623872d2c46a8871b75859be323840928b43d9d2385a2cca894b47b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>101/62</topic><topic>13/106</topic><topic>14/1</topic><topic>14/34</topic><topic>631/1647/767/1657</topic><topic>639/166/985</topic><topic>Adhesion</topic><topic>Biomimetics - instrumentation</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Vessels - cytology</topic><topic>Blood Vessels - physiology</topic><topic>Cell adhesion & migration</topic><topic>Cell adhesion molecules</topic><topic>Cell Communication - physiology</topic><topic>Cell culture</topic><topic>Cell interactions</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - physiology</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Erythrocytes</topic><topic>Erythrocytes - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lab-On-A-Chip Devices</topic><topic>Mechanical stimuli</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Shear stress</topic><topic>Sickle cell disease</topic><topic>Studies</topic><topic>Vascular cell adhesion molecule 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannino, Robert G.</creatorcontrib><creatorcontrib>Myers, David R.</creatorcontrib><creatorcontrib>Ahn, Byungwook</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><creatorcontrib>Margo Rollins</creatorcontrib><creatorcontrib>Gole, Hope</creatorcontrib><creatorcontrib>Lin, Angela S.</creatorcontrib><creatorcontrib>Guldberg, Robert E.</creatorcontrib><creatorcontrib>Giddens, Don P.</creatorcontrib><creatorcontrib>Timmins, Lucas H.</creatorcontrib><creatorcontrib>Lam, Wilbur A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannino, Robert G.</au><au>Myers, David R.</au><au>Ahn, Byungwook</au><au>Wang, Yichen</au><au>Margo Rollins</au><au>Gole, Hope</au><au>Lin, Angela S.</au><au>Guldberg, Robert E.</au><au>Giddens, Don P.</au><au>Timmins, Lucas H.</au><au>Lam, Wilbur A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>12401</spage><epage>12401</epage><pages>12401-12401</pages><artnum>12401</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Investigating biophysical cellular interactions in the circulation currently requires choosing between
in vivo
models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or
in vitro
systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an
in vitro
“do-it-yourself” perfusable vasculature model that recapitulates
in vivo
geometries, such as aneurysms, stenoses and bifurcations and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make,
in vitro
vasculature models.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26202603</pmid><doi>10.1038/srep12401</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-07, Vol.5 (1), p.12401-12401, Article 12401 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4894411 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 101/62 13/106 14/1 14/34 631/1647/767/1657 639/166/985 Adhesion Biomimetics - instrumentation Blood Flow Velocity - physiology Blood Vessels - cytology Blood Vessels - physiology Cell adhesion & migration Cell adhesion molecules Cell Communication - physiology Cell culture Cell interactions Cells, Cultured Coculture Techniques Endothelial cells Endothelial Cells - cytology Endothelial Cells - physiology Equipment Design Equipment Failure Analysis Erythrocytes Erythrocytes - physiology Humanities and Social Sciences Humans Lab-On-A-Chip Devices Mechanical stimuli multidisciplinary Science Shear stress Sickle cell disease Studies Vascular cell adhesion molecule 1 |
title | Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do-it-yourself%20in%20vitro%20vasculature%20that%20recapitulates%20in%20vivo%20geometries%20for%20investigating%20endothelial-blood%20cell%20interactions&rft.jtitle=Scientific%20reports&rft.au=Mannino,%20Robert%20G.&rft.date=2015-07-23&rft.volume=5&rft.issue=1&rft.spage=12401&rft.epage=12401&rft.pages=12401-12401&rft.artnum=12401&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep12401&rft_dat=%3Cproquest_pubme%3E1699490372%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899562525&rft_id=info:pmid/26202603&rfr_iscdi=true |