Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions

Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-07, Vol.5 (1), p.12401-12401, Article 12401
Hauptverfasser: Mannino, Robert G., Myers, David R., Ahn, Byungwook, Wang, Yichen, Margo Rollins, Gole, Hope, Lin, Angela S., Guldberg, Robert E., Giddens, Don P., Timmins, Lucas H., Lam, Wilbur A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12401
container_issue 1
container_start_page 12401
container_title Scientific reports
container_volume 5
creator Mannino, Robert G.
Myers, David R.
Ahn, Byungwook
Wang, Yichen
Margo Rollins
Gole, Hope
Lin, Angela S.
Guldberg, Robert E.
Giddens, Don P.
Timmins, Lucas H.
Lam, Wilbur A.
description Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses and bifurcations and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (
doi_str_mv 10.1038/srep12401
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4894411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1699490372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a25f24af623872d2c46a8871b75859be323840928b43d9d2385a2cca894b47b13</originalsourceid><addsrcrecordid>eNplkcFvFCEUxonR2Kb24D9gJvGiTUbhATNwMWmqVZMmXvRMGIaZpWFhBWaSnvzXZbN1syoX4Hu_fLzHh9BLgt8RTMX7nOyOAMPkCToHzHgLFODpyfkMXeZ8j-viIBmRz9EZdIChw_Qc_foYW1fah7ikbP3UuNCsrqTYrDqbxeuyJNuUjS5NskbvXNlrNh-4NTazjVtbkqvSFFOVV5uLm3VxYW5sGGPZWO-0bwcf49gY632Fik3aFBdDfoGeTdpne_m4X6Aft5--33xp7759_npzfdcaRkVpNfAJmJ46oKKHEQzrtBA9GXouuBwsrTrDEsTA6CjHeuMajNFCsoH1A6EX6MPBd7cMWzsaG0rSXu2S2-r0oKJ26u9KcBs1x1WxasHI3uDNo0GKP5c6pNq6vB9HBxuXrEgnJZOY9lDR1_-g9_V7Qx1PESEl74ADr9TbA2VSzDXE6dgMwWqfrDomW9lXp90fyT85VuDqAORaCrNNJ0_-5_Yb1bevwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899562525</pqid></control><display><type>article</type><title>Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mannino, Robert G. ; Myers, David R. ; Ahn, Byungwook ; Wang, Yichen ; Margo Rollins ; Gole, Hope ; Lin, Angela S. ; Guldberg, Robert E. ; Giddens, Don P. ; Timmins, Lucas H. ; Lam, Wilbur A.</creator><creatorcontrib>Mannino, Robert G. ; Myers, David R. ; Ahn, Byungwook ; Wang, Yichen ; Margo Rollins ; Gole, Hope ; Lin, Angela S. ; Guldberg, Robert E. ; Giddens, Don P. ; Timmins, Lucas H. ; Lam, Wilbur A.</creatorcontrib><description>Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses and bifurcations and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (&lt;2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep12401</identifier><identifier>PMID: 26202603</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/62 ; 13/106 ; 14/1 ; 14/34 ; 631/1647/767/1657 ; 639/166/985 ; Adhesion ; Biomimetics - instrumentation ; Blood Flow Velocity - physiology ; Blood Vessels - cytology ; Blood Vessels - physiology ; Cell adhesion &amp; migration ; Cell adhesion molecules ; Cell Communication - physiology ; Cell culture ; Cell interactions ; Cells, Cultured ; Coculture Techniques ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - physiology ; Equipment Design ; Equipment Failure Analysis ; Erythrocytes ; Erythrocytes - physiology ; Humanities and Social Sciences ; Humans ; Lab-On-A-Chip Devices ; Mechanical stimuli ; multidisciplinary ; Science ; Shear stress ; Sickle cell disease ; Studies ; Vascular cell adhesion molecule 1</subject><ispartof>Scientific reports, 2015-07, Vol.5 (1), p.12401-12401, Article 12401</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a25f24af623872d2c46a8871b75859be323840928b43d9d2385a2cca894b47b13</citedby><cites>FETCH-LOGICAL-c438t-a25f24af623872d2c46a8871b75859be323840928b43d9d2385a2cca894b47b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894411/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894411/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26202603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannino, Robert G.</creatorcontrib><creatorcontrib>Myers, David R.</creatorcontrib><creatorcontrib>Ahn, Byungwook</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><creatorcontrib>Margo Rollins</creatorcontrib><creatorcontrib>Gole, Hope</creatorcontrib><creatorcontrib>Lin, Angela S.</creatorcontrib><creatorcontrib>Guldberg, Robert E.</creatorcontrib><creatorcontrib>Giddens, Don P.</creatorcontrib><creatorcontrib>Timmins, Lucas H.</creatorcontrib><creatorcontrib>Lam, Wilbur A.</creatorcontrib><title>Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses and bifurcations and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (&lt;2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models.</description><subject>101/62</subject><subject>13/106</subject><subject>14/1</subject><subject>14/34</subject><subject>631/1647/767/1657</subject><subject>639/166/985</subject><subject>Adhesion</subject><subject>Biomimetics - instrumentation</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Vessels - cytology</subject><subject>Blood Vessels - physiology</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell adhesion molecules</subject><subject>Cell Communication - physiology</subject><subject>Cell culture</subject><subject>Cell interactions</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - physiology</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Erythrocytes</subject><subject>Erythrocytes - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lab-On-A-Chip Devices</subject><subject>Mechanical stimuli</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Shear stress</subject><subject>Sickle cell disease</subject><subject>Studies</subject><subject>Vascular cell adhesion molecule 1</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkcFvFCEUxonR2Kb24D9gJvGiTUbhATNwMWmqVZMmXvRMGIaZpWFhBWaSnvzXZbN1syoX4Hu_fLzHh9BLgt8RTMX7nOyOAMPkCToHzHgLFODpyfkMXeZ8j-viIBmRz9EZdIChw_Qc_foYW1fah7ikbP3UuNCsrqTYrDqbxeuyJNuUjS5NskbvXNlrNh-4NTazjVtbkqvSFFOVV5uLm3VxYW5sGGPZWO-0bwcf49gY632Fik3aFBdDfoGeTdpne_m4X6Aft5--33xp7759_npzfdcaRkVpNfAJmJ46oKKHEQzrtBA9GXouuBwsrTrDEsTA6CjHeuMajNFCsoH1A6EX6MPBd7cMWzsaG0rSXu2S2-r0oKJ26u9KcBs1x1WxasHI3uDNo0GKP5c6pNq6vB9HBxuXrEgnJZOY9lDR1_-g9_V7Qx1PESEl74ADr9TbA2VSzDXE6dgMwWqfrDomW9lXp90fyT85VuDqAORaCrNNJ0_-5_Yb1bevwA</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Mannino, Robert G.</creator><creator>Myers, David R.</creator><creator>Ahn, Byungwook</creator><creator>Wang, Yichen</creator><creator>Margo Rollins</creator><creator>Gole, Hope</creator><creator>Lin, Angela S.</creator><creator>Guldberg, Robert E.</creator><creator>Giddens, Don P.</creator><creator>Timmins, Lucas H.</creator><creator>Lam, Wilbur A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150723</creationdate><title>Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions</title><author>Mannino, Robert G. ; Myers, David R. ; Ahn, Byungwook ; Wang, Yichen ; Margo Rollins ; Gole, Hope ; Lin, Angela S. ; Guldberg, Robert E. ; Giddens, Don P. ; Timmins, Lucas H. ; Lam, Wilbur A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a25f24af623872d2c46a8871b75859be323840928b43d9d2385a2cca894b47b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>101/62</topic><topic>13/106</topic><topic>14/1</topic><topic>14/34</topic><topic>631/1647/767/1657</topic><topic>639/166/985</topic><topic>Adhesion</topic><topic>Biomimetics - instrumentation</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Vessels - cytology</topic><topic>Blood Vessels - physiology</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell adhesion molecules</topic><topic>Cell Communication - physiology</topic><topic>Cell culture</topic><topic>Cell interactions</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - physiology</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Erythrocytes</topic><topic>Erythrocytes - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lab-On-A-Chip Devices</topic><topic>Mechanical stimuli</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Shear stress</topic><topic>Sickle cell disease</topic><topic>Studies</topic><topic>Vascular cell adhesion molecule 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannino, Robert G.</creatorcontrib><creatorcontrib>Myers, David R.</creatorcontrib><creatorcontrib>Ahn, Byungwook</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><creatorcontrib>Margo Rollins</creatorcontrib><creatorcontrib>Gole, Hope</creatorcontrib><creatorcontrib>Lin, Angela S.</creatorcontrib><creatorcontrib>Guldberg, Robert E.</creatorcontrib><creatorcontrib>Giddens, Don P.</creatorcontrib><creatorcontrib>Timmins, Lucas H.</creatorcontrib><creatorcontrib>Lam, Wilbur A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannino, Robert G.</au><au>Myers, David R.</au><au>Ahn, Byungwook</au><au>Wang, Yichen</au><au>Margo Rollins</au><au>Gole, Hope</au><au>Lin, Angela S.</au><au>Guldberg, Robert E.</au><au>Giddens, Don P.</au><au>Timmins, Lucas H.</au><au>Lam, Wilbur A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>12401</spage><epage>12401</epage><pages>12401-12401</pages><artnum>12401</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses and bifurcations and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (&lt;2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26202603</pmid><doi>10.1038/srep12401</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-07, Vol.5 (1), p.12401-12401, Article 12401
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4894411
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 101/62
13/106
14/1
14/34
631/1647/767/1657
639/166/985
Adhesion
Biomimetics - instrumentation
Blood Flow Velocity - physiology
Blood Vessels - cytology
Blood Vessels - physiology
Cell adhesion & migration
Cell adhesion molecules
Cell Communication - physiology
Cell culture
Cell interactions
Cells, Cultured
Coculture Techniques
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - physiology
Equipment Design
Equipment Failure Analysis
Erythrocytes
Erythrocytes - physiology
Humanities and Social Sciences
Humans
Lab-On-A-Chip Devices
Mechanical stimuli
multidisciplinary
Science
Shear stress
Sickle cell disease
Studies
Vascular cell adhesion molecule 1
title Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do-it-yourself%20in%20vitro%20vasculature%20that%20recapitulates%20in%20vivo%20geometries%20for%20investigating%20endothelial-blood%20cell%20interactions&rft.jtitle=Scientific%20reports&rft.au=Mannino,%20Robert%20G.&rft.date=2015-07-23&rft.volume=5&rft.issue=1&rft.spage=12401&rft.epage=12401&rft.pages=12401-12401&rft.artnum=12401&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep12401&rft_dat=%3Cproquest_pubme%3E1699490372%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899562525&rft_id=info:pmid/26202603&rfr_iscdi=true