ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate

Abstract Brain tissue loss following stroke is irreversible with current treatment modalities. The use of an acellular extracellular matrix (ECM), formulated to produce a hydrogel in situ within the cavity formed by a stroke, was investigated as a method to replace necrotic debris and promote the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2016-06, Vol.91, p.166-181
Hauptverfasser: Ghuman, Harmanvir, Massensini, Andre R, Donnelly, Julia, Kim, Sung-Min, Medberry, Christopher J, Badylak, Stephen F, Modo, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue
container_start_page 166
container_title Biomaterials
container_volume 91
creator Ghuman, Harmanvir
Massensini, Andre R
Donnelly, Julia
Kim, Sung-Min
Medberry, Christopher J
Badylak, Stephen F
Modo, Michel
description Abstract Brain tissue loss following stroke is irreversible with current treatment modalities. The use of an acellular extracellular matrix (ECM), formulated to produce a hydrogel in situ within the cavity formed by a stroke, was investigated as a method to replace necrotic debris and promote the infiltration of host brain cells. Based on magnetic resonance imaging measurements of lesion location and volume, different concentrations of ECM (0, 1, 2, 3, 4, 8 mg/mL) were injected at a volume equal to that of the cavity (14 days post-stroke). Retention of ECM within the cavity occurred at concentrations >3 mg/mL. A significant cell infiltration into the ECM material in the lesion cavity occurred with an average of ∼36,000 cells in the 8 mg/mL concentration within 24 h. An infiltration of cells with distances of >1500 μm into the ECM hydrogel was observed, but the majority of cells were at the tissue/hydrogel boundary. Cells were typically of a microglia, macrophage, or neural and oligodendrocyte progenitor phenotype. At the 8 mg/mL concentration, ∼60% of infiltrating cells were brain-derived phenotypes and 30% being infiltrating peripheral macrophages, polarizing toward an M2-like anti-inflammatory phenotype. These results suggest that an 8 mg/mL ECM concentration promotes a significant acute endogenous repair response that could potentially be exploited to treat stroke.
doi_str_mv 10.1016/j.biomaterials.2016.03.014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4893791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961216300291</els_id><sourcerecordid>1779427744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707t-dbbf624f88f3ba1f9cdedb2464d10b047c56ae4572d64f027efaccd9c2e2c73b3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCILoW_gCJOXDaMPxInPVRC2_IhFXHg42o5zrjxNomL7a20_HpsbakKl1Y-WJ558-aN5xXFGwIVAdK821a9dbOK6K2aQkVTrAJWAeFPihVpRbuuO6ifFqsUoeuuIfSoeBHCFtIbOH1eHFEBjLSErIqf55sv5bgfvLvEqTTOl3HEMnpUccYlls6UIXp3hSflZlRe6dz1t4rWLTmXwaMLsdQ4TaVdjJ2iT8peFs9M0oavbu_j4seH8--bT-uLrx8_b95frLUAEddD35uGctO2hvWKmE4POPSUN3wg0AMXum4U8lrQoeEGqECjtB46TZFqwXp2XJweeK93_YyDTpK9muS1t7Pye-mUlf9mFjvKS3cjedsx0ZFE8PaWwLtfOwxRzjbkYdSCbhckBQAGHeXiQShpIZ2G8YdZiWhryrqO8UdARcepEDxDTw5Q7V0IHs3dnARkdobcyvvOkNkZEphMe0_Fr-__1F3pXyskwNkBgGlfNxa9DNrionGwHnWUg7OP63P6H42e7GK1mq5wj2Hrdn7JNUQGKkF-yx7NFiUNA6BpI38A8BHnCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779427744</pqid></control><display><type>article</type><title>ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ghuman, Harmanvir ; Massensini, Andre R ; Donnelly, Julia ; Kim, Sung-Min ; Medberry, Christopher J ; Badylak, Stephen F ; Modo, Michel</creator><creatorcontrib>Ghuman, Harmanvir ; Massensini, Andre R ; Donnelly, Julia ; Kim, Sung-Min ; Medberry, Christopher J ; Badylak, Stephen F ; Modo, Michel</creatorcontrib><description>Abstract Brain tissue loss following stroke is irreversible with current treatment modalities. The use of an acellular extracellular matrix (ECM), formulated to produce a hydrogel in situ within the cavity formed by a stroke, was investigated as a method to replace necrotic debris and promote the infiltration of host brain cells. Based on magnetic resonance imaging measurements of lesion location and volume, different concentrations of ECM (0, 1, 2, 3, 4, 8 mg/mL) were injected at a volume equal to that of the cavity (14 days post-stroke). Retention of ECM within the cavity occurred at concentrations &gt;3 mg/mL. A significant cell infiltration into the ECM material in the lesion cavity occurred with an average of ∼36,000 cells in the 8 mg/mL concentration within 24 h. An infiltration of cells with distances of &gt;1500 μm into the ECM hydrogel was observed, but the majority of cells were at the tissue/hydrogel boundary. Cells were typically of a microglia, macrophage, or neural and oligodendrocyte progenitor phenotype. At the 8 mg/mL concentration, ∼60% of infiltrating cells were brain-derived phenotypes and 30% being infiltrating peripheral macrophages, polarizing toward an M2-like anti-inflammatory phenotype. These results suggest that an 8 mg/mL ECM concentration promotes a significant acute endogenous repair response that could potentially be exploited to treat stroke.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.03.014</identifier><identifier>PMID: 27031811</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Biomaterial ; Brain ; Brain - cytology ; Brain - pathology ; Delivery ; Dentistry ; Electrochemical machining ; Extracellular matrix ; Extracellular Matrix - chemistry ; Extracellular Matrix - transplantation ; Holes ; hydrocolloids ; Hydrogel ; Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry ; Hydrogel, Polyethylene Glycol Dimethacrylate - therapeutic use ; Hydrogels ; Infarction, Middle Cerebral Artery - pathology ; Infarction, Middle Cerebral Artery - therapy ; Infiltration ; Injection ; Lesions ; Macrophage ; Macrophages ; Macrophages - pathology ; Magnetic resonance imaging ; Male ; Microglia - pathology ; Neural progenitor ; oligodendroglia ; phenotype ; Phenotypes ; Rats, Sprague-Dawley ; Stereotactic ; Stroke ; Stroke - pathology ; Stroke - therapy ; Strokes ; Swine ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2016-06, Vol.91, p.166-181</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c707t-dbbf624f88f3ba1f9cdedb2464d10b047c56ae4572d64f027efaccd9c2e2c73b3</citedby><cites>FETCH-LOGICAL-c707t-dbbf624f88f3ba1f9cdedb2464d10b047c56ae4572d64f027efaccd9c2e2c73b3</cites><orcidid>0000-0002-9123-7796 ; 0000-0003-4436-735X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961216300291$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27031811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghuman, Harmanvir</creatorcontrib><creatorcontrib>Massensini, Andre R</creatorcontrib><creatorcontrib>Donnelly, Julia</creatorcontrib><creatorcontrib>Kim, Sung-Min</creatorcontrib><creatorcontrib>Medberry, Christopher J</creatorcontrib><creatorcontrib>Badylak, Stephen F</creatorcontrib><creatorcontrib>Modo, Michel</creatorcontrib><title>ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Brain tissue loss following stroke is irreversible with current treatment modalities. The use of an acellular extracellular matrix (ECM), formulated to produce a hydrogel in situ within the cavity formed by a stroke, was investigated as a method to replace necrotic debris and promote the infiltration of host brain cells. Based on magnetic resonance imaging measurements of lesion location and volume, different concentrations of ECM (0, 1, 2, 3, 4, 8 mg/mL) were injected at a volume equal to that of the cavity (14 days post-stroke). Retention of ECM within the cavity occurred at concentrations &gt;3 mg/mL. A significant cell infiltration into the ECM material in the lesion cavity occurred with an average of ∼36,000 cells in the 8 mg/mL concentration within 24 h. An infiltration of cells with distances of &gt;1500 μm into the ECM hydrogel was observed, but the majority of cells were at the tissue/hydrogel boundary. Cells were typically of a microglia, macrophage, or neural and oligodendrocyte progenitor phenotype. At the 8 mg/mL concentration, ∼60% of infiltrating cells were brain-derived phenotypes and 30% being infiltrating peripheral macrophages, polarizing toward an M2-like anti-inflammatory phenotype. These results suggest that an 8 mg/mL ECM concentration promotes a significant acute endogenous repair response that could potentially be exploited to treat stroke.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Biomaterial</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - pathology</subject><subject>Delivery</subject><subject>Dentistry</subject><subject>Electrochemical machining</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - chemistry</subject><subject>Extracellular Matrix - transplantation</subject><subject>Holes</subject><subject>hydrocolloids</subject><subject>Hydrogel</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - therapeutic use</subject><subject>Hydrogels</subject><subject>Infarction, Middle Cerebral Artery - pathology</subject><subject>Infarction, Middle Cerebral Artery - therapy</subject><subject>Infiltration</subject><subject>Injection</subject><subject>Lesions</subject><subject>Macrophage</subject><subject>Macrophages</subject><subject>Macrophages - pathology</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Microglia - pathology</subject><subject>Neural progenitor</subject><subject>oligodendroglia</subject><subject>phenotype</subject><subject>Phenotypes</subject><subject>Rats, Sprague-Dawley</subject><subject>Stereotactic</subject><subject>Stroke</subject><subject>Stroke - pathology</subject><subject>Stroke - therapy</subject><subject>Strokes</subject><subject>Swine</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQjRCILoW_gCJOXDaMPxInPVRC2_IhFXHg42o5zrjxNomL7a20_HpsbakKl1Y-WJ558-aN5xXFGwIVAdK821a9dbOK6K2aQkVTrAJWAeFPihVpRbuuO6ifFqsUoeuuIfSoeBHCFtIbOH1eHFEBjLSErIqf55sv5bgfvLvEqTTOl3HEMnpUccYlls6UIXp3hSflZlRe6dz1t4rWLTmXwaMLsdQ4TaVdjJ2iT8peFs9M0oavbu_j4seH8--bT-uLrx8_b95frLUAEddD35uGctO2hvWKmE4POPSUN3wg0AMXum4U8lrQoeEGqECjtB46TZFqwXp2XJweeK93_YyDTpK9muS1t7Pye-mUlf9mFjvKS3cjedsx0ZFE8PaWwLtfOwxRzjbkYdSCbhckBQAGHeXiQShpIZ2G8YdZiWhryrqO8UdARcepEDxDTw5Q7V0IHs3dnARkdobcyvvOkNkZEphMe0_Fr-__1F3pXyskwNkBgGlfNxa9DNrionGwHnWUg7OP63P6H42e7GK1mq5wj2Hrdn7JNUQGKkF-yx7NFiUNA6BpI38A8BHnCg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Ghuman, Harmanvir</creator><creator>Massensini, Andre R</creator><creator>Donnelly, Julia</creator><creator>Kim, Sung-Min</creator><creator>Medberry, Christopher J</creator><creator>Badylak, Stephen F</creator><creator>Modo, Michel</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9123-7796</orcidid><orcidid>https://orcid.org/0000-0003-4436-735X</orcidid></search><sort><creationdate>20160601</creationdate><title>ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate</title><author>Ghuman, Harmanvir ; Massensini, Andre R ; Donnelly, Julia ; Kim, Sung-Min ; Medberry, Christopher J ; Badylak, Stephen F ; Modo, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707t-dbbf624f88f3ba1f9cdedb2464d10b047c56ae4572d64f027efaccd9c2e2c73b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Biomaterial</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - pathology</topic><topic>Delivery</topic><topic>Dentistry</topic><topic>Electrochemical machining</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - chemistry</topic><topic>Extracellular Matrix - transplantation</topic><topic>Holes</topic><topic>hydrocolloids</topic><topic>Hydrogel</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - therapeutic use</topic><topic>Hydrogels</topic><topic>Infarction, Middle Cerebral Artery - pathology</topic><topic>Infarction, Middle Cerebral Artery - therapy</topic><topic>Infiltration</topic><topic>Injection</topic><topic>Lesions</topic><topic>Macrophage</topic><topic>Macrophages</topic><topic>Macrophages - pathology</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Microglia - pathology</topic><topic>Neural progenitor</topic><topic>oligodendroglia</topic><topic>phenotype</topic><topic>Phenotypes</topic><topic>Rats, Sprague-Dawley</topic><topic>Stereotactic</topic><topic>Stroke</topic><topic>Stroke - pathology</topic><topic>Stroke - therapy</topic><topic>Strokes</topic><topic>Swine</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghuman, Harmanvir</creatorcontrib><creatorcontrib>Massensini, Andre R</creatorcontrib><creatorcontrib>Donnelly, Julia</creatorcontrib><creatorcontrib>Kim, Sung-Min</creatorcontrib><creatorcontrib>Medberry, Christopher J</creatorcontrib><creatorcontrib>Badylak, Stephen F</creatorcontrib><creatorcontrib>Modo, Michel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghuman, Harmanvir</au><au>Massensini, Andre R</au><au>Donnelly, Julia</au><au>Kim, Sung-Min</au><au>Medberry, Christopher J</au><au>Badylak, Stephen F</au><au>Modo, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>91</volume><spage>166</spage><epage>181</epage><pages>166-181</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Brain tissue loss following stroke is irreversible with current treatment modalities. The use of an acellular extracellular matrix (ECM), formulated to produce a hydrogel in situ within the cavity formed by a stroke, was investigated as a method to replace necrotic debris and promote the infiltration of host brain cells. Based on magnetic resonance imaging measurements of lesion location and volume, different concentrations of ECM (0, 1, 2, 3, 4, 8 mg/mL) were injected at a volume equal to that of the cavity (14 days post-stroke). Retention of ECM within the cavity occurred at concentrations &gt;3 mg/mL. A significant cell infiltration into the ECM material in the lesion cavity occurred with an average of ∼36,000 cells in the 8 mg/mL concentration within 24 h. An infiltration of cells with distances of &gt;1500 μm into the ECM hydrogel was observed, but the majority of cells were at the tissue/hydrogel boundary. Cells were typically of a microglia, macrophage, or neural and oligodendrocyte progenitor phenotype. At the 8 mg/mL concentration, ∼60% of infiltrating cells were brain-derived phenotypes and 30% being infiltrating peripheral macrophages, polarizing toward an M2-like anti-inflammatory phenotype. These results suggest that an 8 mg/mL ECM concentration promotes a significant acute endogenous repair response that could potentially be exploited to treat stroke.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27031811</pmid><doi>10.1016/j.biomaterials.2016.03.014</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9123-7796</orcidid><orcidid>https://orcid.org/0000-0003-4436-735X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2016-06, Vol.91, p.166-181
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4893791
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Advanced Basic Science
Animals
Biomaterial
Brain
Brain - cytology
Brain - pathology
Delivery
Dentistry
Electrochemical machining
Extracellular matrix
Extracellular Matrix - chemistry
Extracellular Matrix - transplantation
Holes
hydrocolloids
Hydrogel
Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry
Hydrogel, Polyethylene Glycol Dimethacrylate - therapeutic use
Hydrogels
Infarction, Middle Cerebral Artery - pathology
Infarction, Middle Cerebral Artery - therapy
Infiltration
Injection
Lesions
Macrophage
Macrophages
Macrophages - pathology
Magnetic resonance imaging
Male
Microglia - pathology
Neural progenitor
oligodendroglia
phenotype
Phenotypes
Rats, Sprague-Dawley
Stereotactic
Stroke
Stroke - pathology
Stroke - therapy
Strokes
Swine
Tissue Scaffolds - chemistry
title ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ECM%20hydrogel%20for%20the%20treatment%20of%20stroke:%20Characterization%20of%20the%20host%20cell%20infiltrate&rft.jtitle=Biomaterials&rft.au=Ghuman,%20Harmanvir&rft.date=2016-06-01&rft.volume=91&rft.spage=166&rft.epage=181&rft.pages=166-181&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.03.014&rft_dat=%3Cproquest_pubme%3E1779427744%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779427744&rft_id=info:pmid/27031811&rft_els_id=S0142961216300291&rfr_iscdi=true