MOF maintains transcriptional programs regulating cellular stress response

MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2016-05, Vol.35 (21), p.2698-2710
Hauptverfasser: Sheikh, B N, Bechtel-Walz, W, Lucci, J, Karpiuk, O, Hild, I, Hartleben, B, Vornweg, J, Helmstädter, M, Sahyoun, A H, Bhardwaj, V, Stehle, T, Diehl, S, Kretz, O, Voss, A K, Thomas, T, Manke, T, Huber, T B, Akhtar, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2710
container_issue 21
container_start_page 2698
container_title Oncogene
container_volume 35
creator Sheikh, B N
Bechtel-Walz, W
Lucci, J
Karpiuk, O
Hild, I
Hartleben, B
Vornweg, J
Helmstädter, M
Sahyoun, A H
Bhardwaj, V
Stehle, T
Diehl, S
Kretz, O
Voss, A K
Thomas, T
Manke, T
Huber, T B
Akhtar, A
description MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo . Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.
doi_str_mv 10.1038/onc.2015.335
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4893634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A458571878</galeid><sourcerecordid>A458571878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-8c8ad1eef546ad025bc5e40909e5948b0e9f6e09e65b56d5608a73812e87ff2a3</originalsourceid><addsrcrecordid>eNqFkktr3TAQhUVpaG7S7rouhm66iG_H1tObQghJH6Rk066Frjx2FWzJlexA_31kbpomJRCE0GO-ORoNh5C3FWwroOpj8HZbQ8W3lPIXZFMxKUrOG_aSbKDhUDY1rQ_JUUrXACAbqF-Rw1pQJTmVG_Lt-9VFMRrn5zxTMUfjk41uml3wZiimGPpoxlRE7JfBzM73hcVhyPtYpDliWkNpCj7ha3LQmSHhm7v1mPy8OP9x9qW8vPr89ez0srScw1wqq0xbIXacCdNCzXeWI4MGGsxVqx1g0wnMJ8F3XLRcgDKSqqpGJbuuNvSYfNrrTstuxNaiz1UPeopuNPGPDsbpxxHvfuk-3GimGiooywIf7gRi-L1gmvXo0vor4zEsSVcKlGTAhHoelbm9klEQGX3_H3odlpibuKekooyzf1RvBtTOdyGXaFdRfcq44rJScn12-wSVR4ujs8Fj5_L9o4STfYKNIaWI3X07KtCrTXS2iV5torNNMv7uYQvv4b--yEC5B1IO-R7jg888JXgLkr7G6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792783454</pqid></control><display><type>article</type><title>MOF maintains transcriptional programs regulating cellular stress response</title><source>MEDLINE</source><source>Springer Journals</source><source>Nature Journals Online</source><creator>Sheikh, B N ; Bechtel-Walz, W ; Lucci, J ; Karpiuk, O ; Hild, I ; Hartleben, B ; Vornweg, J ; Helmstädter, M ; Sahyoun, A H ; Bhardwaj, V ; Stehle, T ; Diehl, S ; Kretz, O ; Voss, A K ; Thomas, T ; Manke, T ; Huber, T B ; Akhtar, A</creator><creatorcontrib>Sheikh, B N ; Bechtel-Walz, W ; Lucci, J ; Karpiuk, O ; Hild, I ; Hartleben, B ; Vornweg, J ; Helmstädter, M ; Sahyoun, A H ; Bhardwaj, V ; Stehle, T ; Diehl, S ; Kretz, O ; Voss, A K ; Thomas, T ; Manke, T ; Huber, T B ; Akhtar, A</creatorcontrib><description>MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo . Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2015.335</identifier><identifier>PMID: 26387537</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 13/1 ; 45/41 ; 631/208/176/1433 ; 64/60 ; Animals ; Apoptosis ; Cell Biology ; Cell Cycle Checkpoints - genetics ; Cellular biology ; Cellular control mechanisms ; Drosophila ; Embryos ; Genetic aspects ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Histone Acetyltransferases - genetics ; Histone Acetyltransferases - metabolism ; Human Genetics ; Humans ; Internal Medicine ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Oncology ; Original ; original-article ; Podocytes - cytology ; Podocytes - metabolism ; Podocytes - physiology ; Properties ; Scavenger Receptors, Class A - genetics ; Scavenger Receptors, Class A - metabolism ; Stress ; Stress (Physiology) ; Stress, Physiological - genetics ; Tissues ; Transcription factors ; Transcription, Genetic</subject><ispartof>Oncogene, 2016-05, Vol.35 (21), p.2698-2710</ispartof><rights>The Author(s) 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 26, 2016</rights><rights>Copyright © 2016 Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-8c8ad1eef546ad025bc5e40909e5948b0e9f6e09e65b56d5608a73812e87ff2a3</citedby><cites>FETCH-LOGICAL-c550t-8c8ad1eef546ad025bc5e40909e5948b0e9f6e09e65b56d5608a73812e87ff2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2015.335$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2015.335$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26387537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheikh, B N</creatorcontrib><creatorcontrib>Bechtel-Walz, W</creatorcontrib><creatorcontrib>Lucci, J</creatorcontrib><creatorcontrib>Karpiuk, O</creatorcontrib><creatorcontrib>Hild, I</creatorcontrib><creatorcontrib>Hartleben, B</creatorcontrib><creatorcontrib>Vornweg, J</creatorcontrib><creatorcontrib>Helmstädter, M</creatorcontrib><creatorcontrib>Sahyoun, A H</creatorcontrib><creatorcontrib>Bhardwaj, V</creatorcontrib><creatorcontrib>Stehle, T</creatorcontrib><creatorcontrib>Diehl, S</creatorcontrib><creatorcontrib>Kretz, O</creatorcontrib><creatorcontrib>Voss, A K</creatorcontrib><creatorcontrib>Thomas, T</creatorcontrib><creatorcontrib>Manke, T</creatorcontrib><creatorcontrib>Huber, T B</creatorcontrib><creatorcontrib>Akhtar, A</creatorcontrib><title>MOF maintains transcriptional programs regulating cellular stress response</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo . Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.</description><subject>101/28</subject><subject>13/1</subject><subject>45/41</subject><subject>631/208/176/1433</subject><subject>64/60</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cell Biology</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cellular biology</subject><subject>Cellular control mechanisms</subject><subject>Drosophila</subject><subject>Embryos</subject><subject>Genetic aspects</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Histone Acetyltransferases - genetics</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oncology</subject><subject>Original</subject><subject>original-article</subject><subject>Podocytes - cytology</subject><subject>Podocytes - metabolism</subject><subject>Podocytes - physiology</subject><subject>Properties</subject><subject>Scavenger Receptors, Class A - genetics</subject><subject>Scavenger Receptors, Class A - metabolism</subject><subject>Stress</subject><subject>Stress (Physiology)</subject><subject>Stress, Physiological - genetics</subject><subject>Tissues</subject><subject>Transcription factors</subject><subject>Transcription, Genetic</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkktr3TAQhUVpaG7S7rouhm66iG_H1tObQghJH6Rk066Frjx2FWzJlexA_31kbpomJRCE0GO-ORoNh5C3FWwroOpj8HZbQ8W3lPIXZFMxKUrOG_aSbKDhUDY1rQ_JUUrXACAbqF-Rw1pQJTmVG_Lt-9VFMRrn5zxTMUfjk41uml3wZiimGPpoxlRE7JfBzM73hcVhyPtYpDliWkNpCj7ha3LQmSHhm7v1mPy8OP9x9qW8vPr89ez0srScw1wqq0xbIXacCdNCzXeWI4MGGsxVqx1g0wnMJ8F3XLRcgDKSqqpGJbuuNvSYfNrrTstuxNaiz1UPeopuNPGPDsbpxxHvfuk-3GimGiooywIf7gRi-L1gmvXo0vor4zEsSVcKlGTAhHoelbm9klEQGX3_H3odlpibuKekooyzf1RvBtTOdyGXaFdRfcq44rJScn12-wSVR4ujs8Fj5_L9o4STfYKNIaWI3X07KtCrTXS2iV5torNNMv7uYQvv4b--yEC5B1IO-R7jg888JXgLkr7G6w</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Sheikh, B N</creator><creator>Bechtel-Walz, W</creator><creator>Lucci, J</creator><creator>Karpiuk, O</creator><creator>Hild, I</creator><creator>Hartleben, B</creator><creator>Vornweg, J</creator><creator>Helmstädter, M</creator><creator>Sahyoun, A H</creator><creator>Bhardwaj, V</creator><creator>Stehle, T</creator><creator>Diehl, S</creator><creator>Kretz, O</creator><creator>Voss, A K</creator><creator>Thomas, T</creator><creator>Manke, T</creator><creator>Huber, T B</creator><creator>Akhtar, A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160501</creationdate><title>MOF maintains transcriptional programs regulating cellular stress response</title><author>Sheikh, B N ; Bechtel-Walz, W ; Lucci, J ; Karpiuk, O ; Hild, I ; Hartleben, B ; Vornweg, J ; Helmstädter, M ; Sahyoun, A H ; Bhardwaj, V ; Stehle, T ; Diehl, S ; Kretz, O ; Voss, A K ; Thomas, T ; Manke, T ; Huber, T B ; Akhtar, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-8c8ad1eef546ad025bc5e40909e5948b0e9f6e09e65b56d5608a73812e87ff2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>101/28</topic><topic>13/1</topic><topic>45/41</topic><topic>631/208/176/1433</topic><topic>64/60</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cell Biology</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cellular biology</topic><topic>Cellular control mechanisms</topic><topic>Drosophila</topic><topic>Embryos</topic><topic>Genetic aspects</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Histone Acetyltransferases - genetics</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oncology</topic><topic>Original</topic><topic>original-article</topic><topic>Podocytes - cytology</topic><topic>Podocytes - metabolism</topic><topic>Podocytes - physiology</topic><topic>Properties</topic><topic>Scavenger Receptors, Class A - genetics</topic><topic>Scavenger Receptors, Class A - metabolism</topic><topic>Stress</topic><topic>Stress (Physiology)</topic><topic>Stress, Physiological - genetics</topic><topic>Tissues</topic><topic>Transcription factors</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheikh, B N</creatorcontrib><creatorcontrib>Bechtel-Walz, W</creatorcontrib><creatorcontrib>Lucci, J</creatorcontrib><creatorcontrib>Karpiuk, O</creatorcontrib><creatorcontrib>Hild, I</creatorcontrib><creatorcontrib>Hartleben, B</creatorcontrib><creatorcontrib>Vornweg, J</creatorcontrib><creatorcontrib>Helmstädter, M</creatorcontrib><creatorcontrib>Sahyoun, A H</creatorcontrib><creatorcontrib>Bhardwaj, V</creatorcontrib><creatorcontrib>Stehle, T</creatorcontrib><creatorcontrib>Diehl, S</creatorcontrib><creatorcontrib>Kretz, O</creatorcontrib><creatorcontrib>Voss, A K</creatorcontrib><creatorcontrib>Thomas, T</creatorcontrib><creatorcontrib>Manke, T</creatorcontrib><creatorcontrib>Huber, T B</creatorcontrib><creatorcontrib>Akhtar, A</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheikh, B N</au><au>Bechtel-Walz, W</au><au>Lucci, J</au><au>Karpiuk, O</au><au>Hild, I</au><au>Hartleben, B</au><au>Vornweg, J</au><au>Helmstädter, M</au><au>Sahyoun, A H</au><au>Bhardwaj, V</au><au>Stehle, T</au><au>Diehl, S</au><au>Kretz, O</au><au>Voss, A K</au><au>Thomas, T</au><au>Manke, T</au><au>Huber, T B</au><au>Akhtar, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF maintains transcriptional programs regulating cellular stress response</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>35</volume><issue>21</issue><spage>2698</spage><epage>2710</epage><pages>2698-2710</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo . Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26387537</pmid><doi>10.1038/onc.2015.335</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2016-05, Vol.35 (21), p.2698-2710
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4893634
source MEDLINE; Springer Journals; Nature Journals Online
subjects 101/28
13/1
45/41
631/208/176/1433
64/60
Animals
Apoptosis
Cell Biology
Cell Cycle Checkpoints - genetics
Cellular biology
Cellular control mechanisms
Drosophila
Embryos
Genetic aspects
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Histone Acetyltransferases - genetics
Histone Acetyltransferases - metabolism
Human Genetics
Humans
Internal Medicine
Medicine
Medicine & Public Health
Mice
Mice, Inbred C57BL
Mice, Transgenic
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Oncology
Original
original-article
Podocytes - cytology
Podocytes - metabolism
Podocytes - physiology
Properties
Scavenger Receptors, Class A - genetics
Scavenger Receptors, Class A - metabolism
Stress
Stress (Physiology)
Stress, Physiological - genetics
Tissues
Transcription factors
Transcription, Genetic
title MOF maintains transcriptional programs regulating cellular stress response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF%20maintains%20transcriptional%20programs%20regulating%20cellular%20stress%20response&rft.jtitle=Oncogene&rft.au=Sheikh,%20B%20N&rft.date=2016-05-01&rft.volume=35&rft.issue=21&rft.spage=2698&rft.epage=2710&rft.pages=2698-2710&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2015.335&rft_dat=%3Cgale_pubme%3EA458571878%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792783454&rft_id=info:pmid/26387537&rft_galeid=A458571878&rfr_iscdi=true