The Research of Improved Grey GM (1, 1) Model to Predict the Postprandial Glucose in Type 2 Diabetes
Diabetes may result in some complications and increase the risk of many serious health problems. The purpose of clinical treatment is to carefully manage the blood glucose concentration. If the blood glucose concentration is predicted, treatments can be taken in advance to reduce the harm to patient...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2016-01, Vol.2016 (2016), p.1-6 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 2016 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2016 |
creator | Li, Quanzhong Sun, Changqing Wei, Fenfen Wang, Yannian |
description | Diabetes may result in some complications and increase the risk of many serious health problems. The purpose of clinical treatment is to carefully manage the blood glucose concentration. If the blood glucose concentration is predicted, treatments can be taken in advance to reduce the harm to patients. For this purpose, an improved grey GM (1, 1) model is applied to predict blood glucose with a small amount of data, and especially in terms of improved smoothness it can get higher prediction accuracy. The original data of blood glucose of type 2 diabetes is acquired by CGMS. Then the prediction model is established. Finally, 50 cases of blood glucose from the Henan Province People’s Hospital are predicted in 5, 10, 15, 20, 25, and 30 minutes, respectively, in advance to verify the prediction model. The prediction result of blood glucose is evaluated by the EGA, MSE, and MAE. Particularly, the prediction results of postprandial blood glucose are presented and analyzed. The result shows that the improved grey GM (1, 1) model has excellent performance in postprandial blood glucose prediction. |
doi_str_mv | 10.1155/2016/6837052 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4893588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A520715501</galeid><sourcerecordid>A520715501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-6336b6dce6f4f6641d318ae45f411c0e7310d54d6fd2335b3405a5625e38d8f23</originalsourceid><addsrcrecordid>eNqNks9LHDEUx4fSUsV667kEerHoan4ncymIbbeCUinbc8hOXtzI7GRMZiz735tl19X2ZC4JvE8-eY9vquojwaeECHFGMZFnUjOFBX1T7VNG-EQSTt7uzoztVYc53-GyNJG4lu-rPapKETO-X7nZAtBvyGBTs0DRo8tln-IDODRNsELTa3REThD5gq6jgxYNEd0kcKEZ0FAu3sQ89Ml2LtgWTduxiRlQ6NBs1QOi6Fuwcxggf6jeedtmONzuB9WfH99nFz8nV7-mlxfnV5OG1_UwkYzJuXQNSM-9lJw4RrQFLjwnpMFQmsZOcCe9o4yJOeNYWCGpAKad9pQdVF833n6cL6GIuiHZ1vQpLG1amWiD-bfShYW5jQ-G65oJrYvgaCtI8X6EPJhlyA20re0gjtkQVSutaE1UQT__h97FMXVlvDXFtFAK62fq1rZgQudjebdZS825oFiVDDEp1MmGalLMOYHftUywWeds1jmbbc4F__RyzB38lGoBjjfAInTO_g2v1EFhwNsXdK3Lh2GPkAS1Gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793857708</pqid></control><display><type>article</type><title>The Research of Improved Grey GM (1, 1) Model to Predict the Postprandial Glucose in Type 2 Diabetes</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Quanzhong ; Sun, Changqing ; Wei, Fenfen ; Wang, Yannian</creator><contributor>Saisho, Yoshifumi</contributor><creatorcontrib>Li, Quanzhong ; Sun, Changqing ; Wei, Fenfen ; Wang, Yannian ; Saisho, Yoshifumi</creatorcontrib><description>Diabetes may result in some complications and increase the risk of many serious health problems. The purpose of clinical treatment is to carefully manage the blood glucose concentration. If the blood glucose concentration is predicted, treatments can be taken in advance to reduce the harm to patients. For this purpose, an improved grey GM (1, 1) model is applied to predict blood glucose with a small amount of data, and especially in terms of improved smoothness it can get higher prediction accuracy. The original data of blood glucose of type 2 diabetes is acquired by CGMS. Then the prediction model is established. Finally, 50 cases of blood glucose from the Henan Province People’s Hospital are predicted in 5, 10, 15, 20, 25, and 30 minutes, respectively, in advance to verify the prediction model. The prediction result of blood glucose is evaluated by the EGA, MSE, and MAE. Particularly, the prediction results of postprandial blood glucose are presented and analyzed. The result shows that the improved grey GM (1, 1) model has excellent performance in postprandial blood glucose prediction.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2016/6837052</identifier><identifier>PMID: 27314034</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Analysis ; Blood Glucose - metabolism ; Blood Glucose Self-Monitoring - methods ; Blood sugar ; Computer Simulation ; Diabetes ; Diabetes Mellitus, Type 2 - diagnosis ; Diabetes Mellitus, Type 2 - physiopathology ; Diagnosis, Computer-Assisted - methods ; Forecasts and trends ; Glucose ; Growth models ; Humans ; Kalman filters ; Least-Squares Analysis ; Metabolic Clearance Rate ; Models, Biological ; Models, Statistical ; Neural networks ; Physicians ; Postprandial Period ; Reproducibility of Results ; Science ; Sensitivity and Specificity ; Type 2 diabetes</subject><ispartof>BioMed research international, 2016-01, Vol.2016 (2016), p.1-6</ispartof><rights>Copyright © 2016 Yannian Wang et al.</rights><rights>COPYRIGHT 2016 John Wiley & Sons, Inc.</rights><rights>Copyright © 2016 Yannian Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 Yannian Wang et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-6336b6dce6f4f6641d318ae45f411c0e7310d54d6fd2335b3405a5625e38d8f23</citedby><cites>FETCH-LOGICAL-c499t-6336b6dce6f4f6641d318ae45f411c0e7310d54d6fd2335b3405a5625e38d8f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893588/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27314034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Saisho, Yoshifumi</contributor><creatorcontrib>Li, Quanzhong</creatorcontrib><creatorcontrib>Sun, Changqing</creatorcontrib><creatorcontrib>Wei, Fenfen</creatorcontrib><creatorcontrib>Wang, Yannian</creatorcontrib><title>The Research of Improved Grey GM (1, 1) Model to Predict the Postprandial Glucose in Type 2 Diabetes</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Diabetes may result in some complications and increase the risk of many serious health problems. The purpose of clinical treatment is to carefully manage the blood glucose concentration. If the blood glucose concentration is predicted, treatments can be taken in advance to reduce the harm to patients. For this purpose, an improved grey GM (1, 1) model is applied to predict blood glucose with a small amount of data, and especially in terms of improved smoothness it can get higher prediction accuracy. The original data of blood glucose of type 2 diabetes is acquired by CGMS. Then the prediction model is established. Finally, 50 cases of blood glucose from the Henan Province People’s Hospital are predicted in 5, 10, 15, 20, 25, and 30 minutes, respectively, in advance to verify the prediction model. The prediction result of blood glucose is evaluated by the EGA, MSE, and MAE. Particularly, the prediction results of postprandial blood glucose are presented and analyzed. The result shows that the improved grey GM (1, 1) model has excellent performance in postprandial blood glucose prediction.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Blood Glucose - metabolism</subject><subject>Blood Glucose Self-Monitoring - methods</subject><subject>Blood sugar</subject><subject>Computer Simulation</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - diagnosis</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Forecasts and trends</subject><subject>Glucose</subject><subject>Growth models</subject><subject>Humans</subject><subject>Kalman filters</subject><subject>Least-Squares Analysis</subject><subject>Metabolic Clearance Rate</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Neural networks</subject><subject>Physicians</subject><subject>Postprandial Period</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Sensitivity and Specificity</subject><subject>Type 2 diabetes</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks9LHDEUx4fSUsV667kEerHoan4ncymIbbeCUinbc8hOXtzI7GRMZiz735tl19X2ZC4JvE8-eY9vquojwaeECHFGMZFnUjOFBX1T7VNG-EQSTt7uzoztVYc53-GyNJG4lu-rPapKETO-X7nZAtBvyGBTs0DRo8tln-IDODRNsELTa3REThD5gq6jgxYNEd0kcKEZ0FAu3sQ89Ml2LtgWTduxiRlQ6NBs1QOi6Fuwcxggf6jeedtmONzuB9WfH99nFz8nV7-mlxfnV5OG1_UwkYzJuXQNSM-9lJw4RrQFLjwnpMFQmsZOcCe9o4yJOeNYWCGpAKad9pQdVF833n6cL6GIuiHZ1vQpLG1amWiD-bfShYW5jQ-G65oJrYvgaCtI8X6EPJhlyA20re0gjtkQVSutaE1UQT__h97FMXVlvDXFtFAK62fq1rZgQudjebdZS825oFiVDDEp1MmGalLMOYHftUywWeds1jmbbc4F__RyzB38lGoBjjfAInTO_g2v1EFhwNsXdK3Lh2GPkAS1Gg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Li, Quanzhong</creator><creator>Sun, Changqing</creator><creator>Wei, Fenfen</creator><creator>Wang, Yannian</creator><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>The Research of Improved Grey GM (1, 1) Model to Predict the Postprandial Glucose in Type 2 Diabetes</title><author>Li, Quanzhong ; Sun, Changqing ; Wei, Fenfen ; Wang, Yannian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-6336b6dce6f4f6641d318ae45f411c0e7310d54d6fd2335b3405a5625e38d8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Blood Glucose - metabolism</topic><topic>Blood Glucose Self-Monitoring - methods</topic><topic>Blood sugar</topic><topic>Computer Simulation</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - diagnosis</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Forecasts and trends</topic><topic>Glucose</topic><topic>Growth models</topic><topic>Humans</topic><topic>Kalman filters</topic><topic>Least-Squares Analysis</topic><topic>Metabolic Clearance Rate</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Neural networks</topic><topic>Physicians</topic><topic>Postprandial Period</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Sensitivity and Specificity</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Quanzhong</creatorcontrib><creatorcontrib>Sun, Changqing</creatorcontrib><creatorcontrib>Wei, Fenfen</creatorcontrib><creatorcontrib>Wang, Yannian</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Quanzhong</au><au>Sun, Changqing</au><au>Wei, Fenfen</au><au>Wang, Yannian</au><au>Saisho, Yoshifumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Research of Improved Grey GM (1, 1) Model to Predict the Postprandial Glucose in Type 2 Diabetes</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Diabetes may result in some complications and increase the risk of many serious health problems. The purpose of clinical treatment is to carefully manage the blood glucose concentration. If the blood glucose concentration is predicted, treatments can be taken in advance to reduce the harm to patients. For this purpose, an improved grey GM (1, 1) model is applied to predict blood glucose with a small amount of data, and especially in terms of improved smoothness it can get higher prediction accuracy. The original data of blood glucose of type 2 diabetes is acquired by CGMS. Then the prediction model is established. Finally, 50 cases of blood glucose from the Henan Province People’s Hospital are predicted in 5, 10, 15, 20, 25, and 30 minutes, respectively, in advance to verify the prediction model. The prediction result of blood glucose is evaluated by the EGA, MSE, and MAE. Particularly, the prediction results of postprandial blood glucose are presented and analyzed. The result shows that the improved grey GM (1, 1) model has excellent performance in postprandial blood glucose prediction.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27314034</pmid><doi>10.1155/2016/6837052</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2016-01, Vol.2016 (2016), p.1-6 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4893588 |
source | MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection |
subjects | Accuracy Analysis Blood Glucose - metabolism Blood Glucose Self-Monitoring - methods Blood sugar Computer Simulation Diabetes Diabetes Mellitus, Type 2 - diagnosis Diabetes Mellitus, Type 2 - physiopathology Diagnosis, Computer-Assisted - methods Forecasts and trends Glucose Growth models Humans Kalman filters Least-Squares Analysis Metabolic Clearance Rate Models, Biological Models, Statistical Neural networks Physicians Postprandial Period Reproducibility of Results Science Sensitivity and Specificity Type 2 diabetes |
title | The Research of Improved Grey GM (1, 1) Model to Predict the Postprandial Glucose in Type 2 Diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Research%20of%20Improved%20Grey%20GM%20(1,%201)%20Model%20to%20Predict%20the%20Postprandial%20Glucose%20in%20Type%202%20Diabetes&rft.jtitle=BioMed%20research%20international&rft.au=Li,%20Quanzhong&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2016/6837052&rft_dat=%3Cgale_pubme%3EA520715501%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793857708&rft_id=info:pmid/27314034&rft_galeid=A520715501&rfr_iscdi=true |