Ultrashort echo time and zero echo time MRI at 7T

Objective Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D ZTE and UTE pulse sequences at 7T to assess differences between these methods. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magma (New York, N.Y.) N.Y.), 2016-06, Vol.29 (3), p.359-370
Hauptverfasser: Larson, Peder E. Z., Han, Misung, Krug, Roland, Jakary, Angela, Nelson, Sarah J., Vigneron, Daniel B., Henry, Roland G., McKinnon, Graeme, Kelley, Douglas A. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 3
container_start_page 359
container_title Magma (New York, N.Y.)
container_volume 29
creator Larson, Peder E. Z.
Han, Misung
Krug, Roland
Jakary, Angela
Nelson, Sarah J.
Vigneron, Daniel B.
Henry, Roland G.
McKinnon, Graeme
Kelley, Douglas A. C.
description Objective Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D ZTE and UTE pulse sequences at 7T to assess differences between these methods. Materials and methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the water- and fat-suppressed solid-state proton projection imaging method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively, as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted in shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Key differences include that ZTE is limited to volumetric imaging, but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection.
doi_str_mv 10.1007/s10334-015-0509-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4892974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825468997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-76822b3324c028a135a20474424258543cf0032c5733fd7ea1acc7c9d9eb74cd3</originalsourceid><addsrcrecordid>eNqNkU1LAzEURYMotlZ_gBuZpZvRl69JshFE_ChUBGnXIc2k7ZTppCZTQX-9Ka2lbtRVIO_kcl8OQucYrjCAuI4YKGU5YJ4DB5XDAepiykkuiwIfoi6oQuacMNpBJzHOAQjmQI9RhxQCiGLQRXhUt8HEmQ9t5uzMZ221cJlpyuzTBb939fzaz0ybieEpOpqYOrqz7dlDo4f74d1TPnh57N_dDnLLBWtzUUhCxpQSZoFIk2oZAkwwRhjhkjNqJwCUJJjSSSmcwcZaYVWp3FgwW9IeutnkLlfjhSuta1LRWi9DtTDhQ3tT6Z-TpprpqX_XTCqiBEsBl9uA4N9WLrZ6UUXr6to0zq-ixpJwVkilxD9QkAXnIv33n6hQVCUjxboA3qA2-BiDm-zKY9BrgXojUCdcrwXqdfzF_ta7F9_GEkA2QEyjZuqCnvtVaJKJX1K_AEKrot0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793901564</pqid></control><display><type>article</type><title>Ultrashort echo time and zero echo time MRI at 7T</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Larson, Peder E. Z. ; Han, Misung ; Krug, Roland ; Jakary, Angela ; Nelson, Sarah J. ; Vigneron, Daniel B. ; Henry, Roland G. ; McKinnon, Graeme ; Kelley, Douglas A. C.</creator><creatorcontrib>Larson, Peder E. Z. ; Han, Misung ; Krug, Roland ; Jakary, Angela ; Nelson, Sarah J. ; Vigneron, Daniel B. ; Henry, Roland G. ; McKinnon, Graeme ; Kelley, Douglas A. C.</creatorcontrib><description>Objective Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D ZTE and UTE pulse sequences at 7T to assess differences between these methods. Materials and methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the water- and fat-suppressed solid-state proton projection imaging method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively, as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted in shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Key differences include that ZTE is limited to volumetric imaging, but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection.</description><identifier>ISSN: 0968-5243</identifier><identifier>EISSN: 1352-8661</identifier><identifier>DOI: 10.1007/s10334-015-0509-0</identifier><identifier>PMID: 26702940</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic noise ; Acoustics ; Algorithms ; Ankle - diagnostic imaging ; Biomedical Engineering and Bioengineering ; Brain - diagnostic imaging ; Brain Mapping - methods ; Computer Appl. in Life Sciences ; Contrast Media - chemistry ; Health Informatics ; Healthy Volunteers ; Humans ; Image contrast ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted ; Imaging ; Knee - diagnostic imaging ; Magnetic resonance ; Magnetic Resonance Imaging ; Medicine ; Medicine &amp; Public Health ; Multiple Sclerosis - diagnostic imaging ; Multiple Sclerosis - physiopathology ; Phantoms, Imaging ; Radiology ; Reconstruction ; Research Article ; Signal-To-Noise Ratio ; Solid State Physics ; Three dimensional</subject><ispartof>Magma (New York, N.Y.), 2016-06, Vol.29 (3), p.359-370</ispartof><rights>ESMRMB 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-76822b3324c028a135a20474424258543cf0032c5733fd7ea1acc7c9d9eb74cd3</citedby><cites>FETCH-LOGICAL-c574t-76822b3324c028a135a20474424258543cf0032c5733fd7ea1acc7c9d9eb74cd3</cites><orcidid>0000-0003-4183-3634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10334-015-0509-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10334-015-0509-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26702940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Larson, Peder E. Z.</creatorcontrib><creatorcontrib>Han, Misung</creatorcontrib><creatorcontrib>Krug, Roland</creatorcontrib><creatorcontrib>Jakary, Angela</creatorcontrib><creatorcontrib>Nelson, Sarah J.</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><creatorcontrib>Henry, Roland G.</creatorcontrib><creatorcontrib>McKinnon, Graeme</creatorcontrib><creatorcontrib>Kelley, Douglas A. C.</creatorcontrib><title>Ultrashort echo time and zero echo time MRI at 7T</title><title>Magma (New York, N.Y.)</title><addtitle>Magn Reson Mater Phy</addtitle><addtitle>MAGMA</addtitle><description>Objective Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D ZTE and UTE pulse sequences at 7T to assess differences between these methods. Materials and methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the water- and fat-suppressed solid-state proton projection imaging method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively, as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted in shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Key differences include that ZTE is limited to volumetric imaging, but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection.</description><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Ankle - diagnostic imaging</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Mapping - methods</subject><subject>Computer Appl. in Life Sciences</subject><subject>Contrast Media - chemistry</subject><subject>Health Informatics</subject><subject>Healthy Volunteers</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging</subject><subject>Knee - diagnostic imaging</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Multiple Sclerosis - diagnostic imaging</subject><subject>Multiple Sclerosis - physiopathology</subject><subject>Phantoms, Imaging</subject><subject>Radiology</subject><subject>Reconstruction</subject><subject>Research Article</subject><subject>Signal-To-Noise Ratio</subject><subject>Solid State Physics</subject><subject>Three dimensional</subject><issn>0968-5243</issn><issn>1352-8661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LAzEURYMotlZ_gBuZpZvRl69JshFE_ChUBGnXIc2k7ZTppCZTQX-9Ka2lbtRVIO_kcl8OQucYrjCAuI4YKGU5YJ4DB5XDAepiykkuiwIfoi6oQuacMNpBJzHOAQjmQI9RhxQCiGLQRXhUt8HEmQ9t5uzMZ221cJlpyuzTBb939fzaz0ybieEpOpqYOrqz7dlDo4f74d1TPnh57N_dDnLLBWtzUUhCxpQSZoFIk2oZAkwwRhjhkjNqJwCUJJjSSSmcwcZaYVWp3FgwW9IeutnkLlfjhSuta1LRWi9DtTDhQ3tT6Z-TpprpqX_XTCqiBEsBl9uA4N9WLrZ6UUXr6to0zq-ixpJwVkilxD9QkAXnIv33n6hQVCUjxboA3qA2-BiDm-zKY9BrgXojUCdcrwXqdfzF_ta7F9_GEkA2QEyjZuqCnvtVaJKJX1K_AEKrot0</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Larson, Peder E. Z.</creator><creator>Han, Misung</creator><creator>Krug, Roland</creator><creator>Jakary, Angela</creator><creator>Nelson, Sarah J.</creator><creator>Vigneron, Daniel B.</creator><creator>Henry, Roland G.</creator><creator>McKinnon, Graeme</creator><creator>Kelley, Douglas A. C.</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4183-3634</orcidid></search><sort><creationdate>20160601</creationdate><title>Ultrashort echo time and zero echo time MRI at 7T</title><author>Larson, Peder E. Z. ; Han, Misung ; Krug, Roland ; Jakary, Angela ; Nelson, Sarah J. ; Vigneron, Daniel B. ; Henry, Roland G. ; McKinnon, Graeme ; Kelley, Douglas A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-76822b3324c028a135a20474424258543cf0032c5733fd7ea1acc7c9d9eb74cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Ankle - diagnostic imaging</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Mapping - methods</topic><topic>Computer Appl. in Life Sciences</topic><topic>Contrast Media - chemistry</topic><topic>Health Informatics</topic><topic>Healthy Volunteers</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging</topic><topic>Knee - diagnostic imaging</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Multiple Sclerosis - diagnostic imaging</topic><topic>Multiple Sclerosis - physiopathology</topic><topic>Phantoms, Imaging</topic><topic>Radiology</topic><topic>Reconstruction</topic><topic>Research Article</topic><topic>Signal-To-Noise Ratio</topic><topic>Solid State Physics</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larson, Peder E. Z.</creatorcontrib><creatorcontrib>Han, Misung</creatorcontrib><creatorcontrib>Krug, Roland</creatorcontrib><creatorcontrib>Jakary, Angela</creatorcontrib><creatorcontrib>Nelson, Sarah J.</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><creatorcontrib>Henry, Roland G.</creatorcontrib><creatorcontrib>McKinnon, Graeme</creatorcontrib><creatorcontrib>Kelley, Douglas A. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magma (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larson, Peder E. Z.</au><au>Han, Misung</au><au>Krug, Roland</au><au>Jakary, Angela</au><au>Nelson, Sarah J.</au><au>Vigneron, Daniel B.</au><au>Henry, Roland G.</au><au>McKinnon, Graeme</au><au>Kelley, Douglas A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrashort echo time and zero echo time MRI at 7T</atitle><jtitle>Magma (New York, N.Y.)</jtitle><stitle>Magn Reson Mater Phy</stitle><addtitle>MAGMA</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>29</volume><issue>3</issue><spage>359</spage><epage>370</epage><pages>359-370</pages><issn>0968-5243</issn><eissn>1352-8661</eissn><abstract>Objective Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D ZTE and UTE pulse sequences at 7T to assess differences between these methods. Materials and methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the water- and fat-suppressed solid-state proton projection imaging method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively, as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted in shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Key differences include that ZTE is limited to volumetric imaging, but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26702940</pmid><doi>10.1007/s10334-015-0509-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4183-3634</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0968-5243
ispartof Magma (New York, N.Y.), 2016-06, Vol.29 (3), p.359-370
issn 0968-5243
1352-8661
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4892974
source MEDLINE; SpringerNature Journals
subjects Acoustic noise
Acoustics
Algorithms
Ankle - diagnostic imaging
Biomedical Engineering and Bioengineering
Brain - diagnostic imaging
Brain Mapping - methods
Computer Appl. in Life Sciences
Contrast Media - chemistry
Health Informatics
Healthy Volunteers
Humans
Image contrast
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted
Imaging
Knee - diagnostic imaging
Magnetic resonance
Magnetic Resonance Imaging
Medicine
Medicine & Public Health
Multiple Sclerosis - diagnostic imaging
Multiple Sclerosis - physiopathology
Phantoms, Imaging
Radiology
Reconstruction
Research Article
Signal-To-Noise Ratio
Solid State Physics
Three dimensional
title Ultrashort echo time and zero echo time MRI at 7T
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrashort%20echo%20time%20and%20zero%20echo%20time%20MRI%20at%207T&rft.jtitle=Magma%20(New%20York,%20N.Y.)&rft.au=Larson,%20Peder%20E.%20Z.&rft.date=2016-06-01&rft.volume=29&rft.issue=3&rft.spage=359&rft.epage=370&rft.pages=359-370&rft.issn=0968-5243&rft.eissn=1352-8661&rft_id=info:doi/10.1007/s10334-015-0509-0&rft_dat=%3Cproquest_pubme%3E1825468997%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793901564&rft_id=info:pmid/26702940&rfr_iscdi=true