Substrate-tuning of correlated spin-orbit oxides revealed by optical conductivity calculations

We have systematically investigated substrate-strain effects on the electronic structures of two representative Sr-iridates, a correlated-insulator Sr 2 IrO 4 and a metal SrIrO 3 . Optical conductivities obtained by the ab initio electronic structure calculations reveal that the tensile strain shift...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-06, Vol.6 (1), p.27095-27095, Article 27095
Hauptverfasser: Kim, Bongjae, Kim, Beom Hyun, Kim, Kyoo, Min, B. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27095
container_issue 1
container_start_page 27095
container_title Scientific reports
container_volume 6
creator Kim, Bongjae
Kim, Beom Hyun
Kim, Kyoo
Min, B. I.
description We have systematically investigated substrate-strain effects on the electronic structures of two representative Sr-iridates, a correlated-insulator Sr 2 IrO 4 and a metal SrIrO 3 . Optical conductivities obtained by the ab initio electronic structure calculations reveal that the tensile strain shifts the optical peak positions to higher energy side with altered intensities, suggesting the enhancement of the electronic correlation and spin-orbit coupling (SOC) strength in Sr-iridates. The response of the electronic structure upon tensile strain is found to be highly correlated with the direction of magnetic moment, the octahedral connectivity, and the SOC strength, which cooperatively determine the robustness of J eff  = 1/2 ground states. Optical responses are analyzed also with microscopic model calculation and compared with corresponding experiments. In the case of SrIrO 3 , the evolution of the electronic structure near the Fermi level shows high tunability of hole bands, as suggested by previous experiments.
doi_str_mv 10.1038/srep27095
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4891771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899873138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-c957eb2597e002f30809c865359f57d3b03252acd3de28cd30439a022e5dda073</originalsourceid><addsrcrecordid>eNplkd9LHDEQx0OpqKgP_gNloS-tsDY_NiZ5KYi0VhB8sL4assnsNbKXbJPs0fvvjZw9rjUvE2Y-850ZvgidEnxOMJNfcoKJCqz4O3RIccdbyih9v_M_QCc5P-H6OFUdUfvogArKL6gkh-jxfu5zSaZAW-bgw6KJQ2NjSjDWnGvy5EMbU-9LE_94B7lJsAIz1lK_buJUvDVjbQhutsWvfFk3NWHn2u1jyMdobzBjhpPXeIQevn_7efWjvb27vrm6vG0tx11preICesqVAIzpwLDEysoLzrgauHCsx4xyaqxjDqisAXdMGUwpcOcMFuwIfd3oTnO_BGch1JtGPSW_NGmto_H630rwv_QirnQnFRGCVIFPrwIp_p4hF7302cI4mgBxzpoIxVRdi8uKfvwPfYpzCvU8TaRSUjDCXqjPG8qmmKtHw3YZgvWLcXprXGU_7G6_Jf_aVIGzDZBrKSwg7Yx8o_YMvSqjqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899873138</pqid></control><display><type>article</type><title>Substrate-tuning of correlated spin-orbit oxides revealed by optical conductivity calculations</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Kim, Bongjae ; Kim, Beom Hyun ; Kim, Kyoo ; Min, B. I.</creator><creatorcontrib>Kim, Bongjae ; Kim, Beom Hyun ; Kim, Kyoo ; Min, B. I.</creatorcontrib><description>We have systematically investigated substrate-strain effects on the electronic structures of two representative Sr-iridates, a correlated-insulator Sr 2 IrO 4 and a metal SrIrO 3 . Optical conductivities obtained by the ab initio electronic structure calculations reveal that the tensile strain shifts the optical peak positions to higher energy side with altered intensities, suggesting the enhancement of the electronic correlation and spin-orbit coupling (SOC) strength in Sr-iridates. The response of the electronic structure upon tensile strain is found to be highly correlated with the direction of magnetic moment, the octahedral connectivity, and the SOC strength, which cooperatively determine the robustness of J eff  = 1/2 ground states. Optical responses are analyzed also with microscopic model calculation and compared with corresponding experiments. In the case of SrIrO 3 , the evolution of the electronic structure near the Fermi level shows high tunability of hole bands, as suggested by previous experiments.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep27095</identifier><identifier>PMID: 27256281</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/544 ; 639/766/119/995 ; Electrons ; Humanities and Social Sciences ; multidisciplinary ; Oxides ; Science</subject><ispartof>Scientific reports, 2016-06, Vol.6 (1), p.27095-27095, Article 27095</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-c957eb2597e002f30809c865359f57d3b03252acd3de28cd30439a022e5dda073</citedby><cites>FETCH-LOGICAL-c504t-c957eb2597e002f30809c865359f57d3b03252acd3de28cd30439a022e5dda073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891771/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891771/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27256281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Bongjae</creatorcontrib><creatorcontrib>Kim, Beom Hyun</creatorcontrib><creatorcontrib>Kim, Kyoo</creatorcontrib><creatorcontrib>Min, B. I.</creatorcontrib><title>Substrate-tuning of correlated spin-orbit oxides revealed by optical conductivity calculations</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We have systematically investigated substrate-strain effects on the electronic structures of two representative Sr-iridates, a correlated-insulator Sr 2 IrO 4 and a metal SrIrO 3 . Optical conductivities obtained by the ab initio electronic structure calculations reveal that the tensile strain shifts the optical peak positions to higher energy side with altered intensities, suggesting the enhancement of the electronic correlation and spin-orbit coupling (SOC) strength in Sr-iridates. The response of the electronic structure upon tensile strain is found to be highly correlated with the direction of magnetic moment, the octahedral connectivity, and the SOC strength, which cooperatively determine the robustness of J eff  = 1/2 ground states. Optical responses are analyzed also with microscopic model calculation and compared with corresponding experiments. In the case of SrIrO 3 , the evolution of the electronic structure near the Fermi level shows high tunability of hole bands, as suggested by previous experiments.</description><subject>639/301/119/544</subject><subject>639/766/119/995</subject><subject>Electrons</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Oxides</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkd9LHDEQx0OpqKgP_gNloS-tsDY_NiZ5KYi0VhB8sL4assnsNbKXbJPs0fvvjZw9rjUvE2Y-850ZvgidEnxOMJNfcoKJCqz4O3RIccdbyih9v_M_QCc5P-H6OFUdUfvogArKL6gkh-jxfu5zSaZAW-bgw6KJQ2NjSjDWnGvy5EMbU-9LE_94B7lJsAIz1lK_buJUvDVjbQhutsWvfFk3NWHn2u1jyMdobzBjhpPXeIQevn_7efWjvb27vrm6vG0tx11preICesqVAIzpwLDEysoLzrgauHCsx4xyaqxjDqisAXdMGUwpcOcMFuwIfd3oTnO_BGch1JtGPSW_NGmto_H630rwv_QirnQnFRGCVIFPrwIp_p4hF7302cI4mgBxzpoIxVRdi8uKfvwPfYpzCvU8TaRSUjDCXqjPG8qmmKtHw3YZgvWLcXprXGU_7G6_Jf_aVIGzDZBrKSwg7Yx8o_YMvSqjqA</recordid><startdate>20160603</startdate><enddate>20160603</enddate><creator>Kim, Bongjae</creator><creator>Kim, Beom Hyun</creator><creator>Kim, Kyoo</creator><creator>Min, B. I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160603</creationdate><title>Substrate-tuning of correlated spin-orbit oxides revealed by optical conductivity calculations</title><author>Kim, Bongjae ; Kim, Beom Hyun ; Kim, Kyoo ; Min, B. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-c957eb2597e002f30809c865359f57d3b03252acd3de28cd30439a022e5dda073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/119/544</topic><topic>639/766/119/995</topic><topic>Electrons</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Oxides</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Bongjae</creatorcontrib><creatorcontrib>Kim, Beom Hyun</creatorcontrib><creatorcontrib>Kim, Kyoo</creatorcontrib><creatorcontrib>Min, B. I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Bongjae</au><au>Kim, Beom Hyun</au><au>Kim, Kyoo</au><au>Min, B. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate-tuning of correlated spin-orbit oxides revealed by optical conductivity calculations</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-06-03</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>27095</spage><epage>27095</epage><pages>27095-27095</pages><artnum>27095</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We have systematically investigated substrate-strain effects on the electronic structures of two representative Sr-iridates, a correlated-insulator Sr 2 IrO 4 and a metal SrIrO 3 . Optical conductivities obtained by the ab initio electronic structure calculations reveal that the tensile strain shifts the optical peak positions to higher energy side with altered intensities, suggesting the enhancement of the electronic correlation and spin-orbit coupling (SOC) strength in Sr-iridates. The response of the electronic structure upon tensile strain is found to be highly correlated with the direction of magnetic moment, the octahedral connectivity, and the SOC strength, which cooperatively determine the robustness of J eff  = 1/2 ground states. Optical responses are analyzed also with microscopic model calculation and compared with corresponding experiments. In the case of SrIrO 3 , the evolution of the electronic structure near the Fermi level shows high tunability of hole bands, as suggested by previous experiments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27256281</pmid><doi>10.1038/srep27095</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-06, Vol.6 (1), p.27095-27095, Article 27095
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4891771
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/301/119/544
639/766/119/995
Electrons
Humanities and Social Sciences
multidisciplinary
Oxides
Science
title Substrate-tuning of correlated spin-orbit oxides revealed by optical conductivity calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate-tuning%20of%20correlated%20spin-orbit%20oxides%20revealed%20by%20optical%20conductivity%20calculations&rft.jtitle=Scientific%20reports&rft.au=Kim,%20Bongjae&rft.date=2016-06-03&rft.volume=6&rft.issue=1&rft.spage=27095&rft.epage=27095&rft.pages=27095-27095&rft.artnum=27095&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep27095&rft_dat=%3Cproquest_pubme%3E1899873138%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899873138&rft_id=info:pmid/27256281&rfr_iscdi=true