A Support Vector Machine Classification of Thyroid Bioptic Specimens Using MALDI-MSI Data
Biomarkers able to characterise and predict multifactorial diseases are still one of the most important targets for all the “omics” investigations. In this context, Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has gained considerable attention in recent years, bu...
Gespeichert in:
Veröffentlicht in: | Advances in Bioinformatics 2016, Vol.2016, p.118-124 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | |
container_start_page | 118 |
container_title | Advances in Bioinformatics |
container_volume | 2016 |
creator | Galli, Manuel Zoppis, Italo De Sio, Gabriele Chinello, Clizia Pagni, Fabio Magni, Fulvio Mauri, Giancarlo |
description | Biomarkers able to characterise and predict multifactorial diseases are still one of the most important targets for all the “omics” investigations. In this context, Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has gained considerable attention in recent years, but it also led to a huge amount of complex data to be elaborated and interpreted. For this reason, computational and machine learning procedures for biomarker discovery are important tools to consider, both to reduce data dimension and to provide predictive markers for specific diseases. For instance, the availability of protein and genetic markers to support thyroid lesion diagnoses would impact deeply on society due to the high presence of undetermined reports (THY3) that are generally treated as malignant patients. In this paper we show how an accurate classification of thyroid bioptic specimens can be obtained through the application of a state-of-the-art machine learning approach (i.e., Support Vector Machines) on MALDI-MSI data, together with a particular wrapper feature selection algorithm (i.e., recursive feature elimination). The model is able to provide an accurate discriminatory capability using only 20 out of 144 features, resulting in an increase of the model performances, reliability, and computational efficiency. Finally, tissue areas rather than average proteomic profiles are classified, highlighting potential discriminating areas of clinical interest. |
doi_str_mv | 10.1155/2016/3791214 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4886047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491909905</galeid><airiti_id>16878027_201612_201702070002_201702070002_118_124</airiti_id><sourcerecordid>A491909905</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4954-cae98b25d0d3fef56b180b0e44c1955d72471ad704cbc8b0bc33ec99ea43e4fe3</originalsourceid><addsrcrecordid>eNqFkstv1DAQxiMEog-4cUaWuCBBWr8SxxekZQt0pV1x2BaJk-U4k11XSRzshKr_PQ67LG2FhHwYP37zWfPNJMkrgs8IybJzikl-zoQklPAnyTHJC5EWmGVPD3sqjpKTEG4wzqkk7HlyRAWVjDNynHyfofXY984P6BuYwXm00mZrO0DzRodga2v0YF2HXI2utnfe2Qp9tK4frEHrHoxtoQvoOthug1az5cUiXa0X6EIP-kXyrNZNgJf7eJpcf_50Nb9Ml1-_LOazZaq5zHhqNMiipFmFK1ZDneUlKXCJgXNDZJZVgnJBdCUwN6UpSlwaxsBICZoz4DWw0-TDTrcfyxYqA93gdaN6b1vt75TTVj186exWbdxPxYsix1xEgbd7Ae9-jBAG1dpgoGl0B24MigiZRyOZLCL65hF640bfxfImijIuMKV_qY1uQNmudvFfM4mqGZdEYilxFqmzf1BxVdBa4zqobbx_kPB-l2C8C8FDfaiRYDWNgppGQe1HIeKv7_tygP_0PgLvdkBsd6Vv7f_kLne0tt4O9l7h0Ztpxn7jhE4huoAFxvjRgZBCEcrZLwqgzJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792347022</pqid></control><display><type>article</type><title>A Support Vector Machine Classification of Thyroid Bioptic Specimens Using MALDI-MSI Data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Galli, Manuel ; Zoppis, Italo ; De Sio, Gabriele ; Chinello, Clizia ; Pagni, Fabio ; Magni, Fulvio ; Mauri, Giancarlo</creator><contributor>Casadio, Rita</contributor><creatorcontrib>Galli, Manuel ; Zoppis, Italo ; De Sio, Gabriele ; Chinello, Clizia ; Pagni, Fabio ; Magni, Fulvio ; Mauri, Giancarlo ; Casadio, Rita</creatorcontrib><description>Biomarkers able to characterise and predict multifactorial diseases are still one of the most important targets for all the “omics” investigations. In this context, Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has gained considerable attention in recent years, but it also led to a huge amount of complex data to be elaborated and interpreted. For this reason, computational and machine learning procedures for biomarker discovery are important tools to consider, both to reduce data dimension and to provide predictive markers for specific diseases. For instance, the availability of protein and genetic markers to support thyroid lesion diagnoses would impact deeply on society due to the high presence of undetermined reports (THY3) that are generally treated as malignant patients. In this paper we show how an accurate classification of thyroid bioptic specimens can be obtained through the application of a state-of-the-art machine learning approach (i.e., Support Vector Machines) on MALDI-MSI data, together with a particular wrapper feature selection algorithm (i.e., recursive feature elimination). The model is able to provide an accurate discriminatory capability using only 20 out of 144 features, resulting in an increase of the model performances, reliability, and computational efficiency. Finally, tissue areas rather than average proteomic profiles are classified, highlighting potential discriminating areas of clinical interest.</description><identifier>ISSN: 1687-8027</identifier><identifier>EISSN: 1687-8035</identifier><identifier>DOI: 10.1155/2016/3791214</identifier><identifier>PMID: 27293431</identifier><language>eng</language><publisher>Egypt: Hindawi Limiteds</publisher><subject>Genetic markers ; Mass spectrometry ; Proteomics</subject><ispartof>Advances in Bioinformatics, 2016, Vol.2016, p.118-124</ispartof><rights>Copyright © 2016 Manuel Galli et al.</rights><rights>COPYRIGHT 2016 John Wiley & Sons, Inc.</rights><rights>Copyright © 2016 Manuel Galli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 Manuel Galli et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4954-cae98b25d0d3fef56b180b0e44c1955d72471ad704cbc8b0bc33ec99ea43e4fe3</citedby><cites>FETCH-LOGICAL-a4954-cae98b25d0d3fef56b180b0e44c1955d72471ad704cbc8b0bc33ec99ea43e4fe3</cites><orcidid>0000-0001-7312-7123 ; 0000-0003-4862-9599 ; 0000-0002-8663-0374 ; 0000-0003-3520-4022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886047/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886047/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4014,27914,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27293431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Casadio, Rita</contributor><creatorcontrib>Galli, Manuel</creatorcontrib><creatorcontrib>Zoppis, Italo</creatorcontrib><creatorcontrib>De Sio, Gabriele</creatorcontrib><creatorcontrib>Chinello, Clizia</creatorcontrib><creatorcontrib>Pagni, Fabio</creatorcontrib><creatorcontrib>Magni, Fulvio</creatorcontrib><creatorcontrib>Mauri, Giancarlo</creatorcontrib><title>A Support Vector Machine Classification of Thyroid Bioptic Specimens Using MALDI-MSI Data</title><title>Advances in Bioinformatics</title><addtitle>Adv Bioinformatics</addtitle><description>Biomarkers able to characterise and predict multifactorial diseases are still one of the most important targets for all the “omics” investigations. In this context, Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has gained considerable attention in recent years, but it also led to a huge amount of complex data to be elaborated and interpreted. For this reason, computational and machine learning procedures for biomarker discovery are important tools to consider, both to reduce data dimension and to provide predictive markers for specific diseases. For instance, the availability of protein and genetic markers to support thyroid lesion diagnoses would impact deeply on society due to the high presence of undetermined reports (THY3) that are generally treated as malignant patients. In this paper we show how an accurate classification of thyroid bioptic specimens can be obtained through the application of a state-of-the-art machine learning approach (i.e., Support Vector Machines) on MALDI-MSI data, together with a particular wrapper feature selection algorithm (i.e., recursive feature elimination). The model is able to provide an accurate discriminatory capability using only 20 out of 144 features, resulting in an increase of the model performances, reliability, and computational efficiency. Finally, tissue areas rather than average proteomic profiles are classified, highlighting potential discriminating areas of clinical interest.</description><subject>Genetic markers</subject><subject>Mass spectrometry</subject><subject>Proteomics</subject><issn>1687-8027</issn><issn>1687-8035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkstv1DAQxiMEog-4cUaWuCBBWr8SxxekZQt0pV1x2BaJk-U4k11XSRzshKr_PQ67LG2FhHwYP37zWfPNJMkrgs8IybJzikl-zoQklPAnyTHJC5EWmGVPD3sqjpKTEG4wzqkk7HlyRAWVjDNynHyfofXY984P6BuYwXm00mZrO0DzRodga2v0YF2HXI2utnfe2Qp9tK4frEHrHoxtoQvoOthug1az5cUiXa0X6EIP-kXyrNZNgJf7eJpcf_50Nb9Ml1-_LOazZaq5zHhqNMiipFmFK1ZDneUlKXCJgXNDZJZVgnJBdCUwN6UpSlwaxsBICZoz4DWw0-TDTrcfyxYqA93gdaN6b1vt75TTVj186exWbdxPxYsix1xEgbd7Ae9-jBAG1dpgoGl0B24MigiZRyOZLCL65hF640bfxfImijIuMKV_qY1uQNmudvFfM4mqGZdEYilxFqmzf1BxVdBa4zqobbx_kPB-l2C8C8FDfaiRYDWNgppGQe1HIeKv7_tygP_0PgLvdkBsd6Vv7f_kLne0tt4O9l7h0Ztpxn7jhE4huoAFxvjRgZBCEcrZLwqgzJg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Galli, Manuel</creator><creator>Zoppis, Italo</creator><creator>De Sio, Gabriele</creator><creator>Chinello, Clizia</creator><creator>Pagni, Fabio</creator><creator>Magni, Fulvio</creator><creator>Mauri, Giancarlo</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>LK8</scope><scope>M0N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7312-7123</orcidid><orcidid>https://orcid.org/0000-0003-4862-9599</orcidid><orcidid>https://orcid.org/0000-0002-8663-0374</orcidid><orcidid>https://orcid.org/0000-0003-3520-4022</orcidid></search><sort><creationdate>2016</creationdate><title>A Support Vector Machine Classification of Thyroid Bioptic Specimens Using MALDI-MSI Data</title><author>Galli, Manuel ; Zoppis, Italo ; De Sio, Gabriele ; Chinello, Clizia ; Pagni, Fabio ; Magni, Fulvio ; Mauri, Giancarlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4954-cae98b25d0d3fef56b180b0e44c1955d72471ad704cbc8b0bc33ec99ea43e4fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Genetic markers</topic><topic>Mass spectrometry</topic><topic>Proteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galli, Manuel</creatorcontrib><creatorcontrib>Zoppis, Italo</creatorcontrib><creatorcontrib>De Sio, Gabriele</creatorcontrib><creatorcontrib>Chinello, Clizia</creatorcontrib><creatorcontrib>Pagni, Fabio</creatorcontrib><creatorcontrib>Magni, Fulvio</creatorcontrib><creatorcontrib>Mauri, Giancarlo</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advances in Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galli, Manuel</au><au>Zoppis, Italo</au><au>De Sio, Gabriele</au><au>Chinello, Clizia</au><au>Pagni, Fabio</au><au>Magni, Fulvio</au><au>Mauri, Giancarlo</au><au>Casadio, Rita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Support Vector Machine Classification of Thyroid Bioptic Specimens Using MALDI-MSI Data</atitle><jtitle>Advances in Bioinformatics</jtitle><addtitle>Adv Bioinformatics</addtitle><date>2016</date><risdate>2016</risdate><volume>2016</volume><spage>118</spage><epage>124</epage><pages>118-124</pages><issn>1687-8027</issn><eissn>1687-8035</eissn><abstract>Biomarkers able to characterise and predict multifactorial diseases are still one of the most important targets for all the “omics” investigations. In this context, Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has gained considerable attention in recent years, but it also led to a huge amount of complex data to be elaborated and interpreted. For this reason, computational and machine learning procedures for biomarker discovery are important tools to consider, both to reduce data dimension and to provide predictive markers for specific diseases. For instance, the availability of protein and genetic markers to support thyroid lesion diagnoses would impact deeply on society due to the high presence of undetermined reports (THY3) that are generally treated as malignant patients. In this paper we show how an accurate classification of thyroid bioptic specimens can be obtained through the application of a state-of-the-art machine learning approach (i.e., Support Vector Machines) on MALDI-MSI data, together with a particular wrapper feature selection algorithm (i.e., recursive feature elimination). The model is able to provide an accurate discriminatory capability using only 20 out of 144 features, resulting in an increase of the model performances, reliability, and computational efficiency. Finally, tissue areas rather than average proteomic profiles are classified, highlighting potential discriminating areas of clinical interest.</abstract><cop>Egypt</cop><pub>Hindawi Limiteds</pub><pmid>27293431</pmid><doi>10.1155/2016/3791214</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7312-7123</orcidid><orcidid>https://orcid.org/0000-0003-4862-9599</orcidid><orcidid>https://orcid.org/0000-0002-8663-0374</orcidid><orcidid>https://orcid.org/0000-0003-3520-4022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8027 |
ispartof | Advances in Bioinformatics, 2016, Vol.2016, p.118-124 |
issn | 1687-8027 1687-8035 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4886047 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection |
subjects | Genetic markers Mass spectrometry Proteomics |
title | A Support Vector Machine Classification of Thyroid Bioptic Specimens Using MALDI-MSI Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Support%20Vector%20Machine%20Classification%20of%20Thyroid%20Bioptic%20Specimens%20Using%20MALDI-MSI%20Data&rft.jtitle=Advances%20in%20Bioinformatics&rft.au=Galli,%20Manuel&rft.date=2016&rft.volume=2016&rft.spage=118&rft.epage=124&rft.pages=118-124&rft.issn=1687-8027&rft.eissn=1687-8035&rft_id=info:doi/10.1155/2016/3791214&rft_dat=%3Cgale_pubme%3EA491909905%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792347022&rft_id=info:pmid/27293431&rft_galeid=A491909905&rft_airiti_id=16878027_201612_201702070002_201702070002_118_124&rfr_iscdi=true |