A subcortical inhibitory signal for behavioral arrest in the thalamus

The authors show that inhibitory neurons of the pontine reticular formation (PRF) exert powerful control over the intralaminar thalamic nuclei, a major gate of forebrain motor centers. Optogenetic activation of inhibitory PRF terminals antagonizes voluntary movements and promotes slow cortical oscil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2015-04, Vol.18 (4), p.562-568
Hauptverfasser: Giber, Kristóf, Diana, Marco A, M Plattner, Viktor, Dugué, Guillaume P, Bokor, Hajnalka, Rousseau, Charly V, Maglóczky, Zsófia, Havas, László, Hangya, Balázs, Wildner, Hendrik, Zeilhofer, Hanns Ulrich, Dieudonné, Stéphane, Acsády, László
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 568
container_issue 4
container_start_page 562
container_title Nature neuroscience
container_volume 18
creator Giber, Kristóf
Diana, Marco A
M Plattner, Viktor
Dugué, Guillaume P
Bokor, Hajnalka
Rousseau, Charly V
Maglóczky, Zsófia
Havas, László
Hangya, Balázs
Wildner, Hendrik
Zeilhofer, Hanns Ulrich
Dieudonné, Stéphane
Acsády, László
description The authors show that inhibitory neurons of the pontine reticular formation (PRF) exert powerful control over the intralaminar thalamic nuclei, a major gate of forebrain motor centers. Optogenetic activation of inhibitory PRF terminals antagonizes voluntary movements and promotes slow cortical oscillations, highlighting the contribution of brainstem ascending projections to large-scale motor circuits. Organization of behavior requires rapid coordination of brainstem and forebrain activity. The exact mechanisms of effective communication between these regions are presently unclear. The intralaminar thalamic nuclei (IL) probably serves as a central hub in this circuit by connecting the critical brainstem and forebrain areas. We found that GABAergic and glycinergic fibers ascending from the pontine reticular formation (PRF) of the brainstem evoked fast and reliable inhibition in the IL via large, multisynaptic terminals. This inhibition was fine-tuned through heterogeneous GABAergic and glycinergic receptor ratios expressed at individual synapses. Optogenetic activation of PRF axons in the IL of freely moving mice led to behavioral arrest and transient interruption of awake cortical activity. An afferent system with comparable morphological features was also found in the human IL. These data reveal an evolutionarily conserved ascending system that gates forebrain activity through fast and powerful synaptic inhibition of the IL.
doi_str_mv 10.1038/nn.3951
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4885661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A408784486</galeid><sourcerecordid>A408784486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-e7db772ebece71e469b4d249d2d369af3e8ed44d9508a74fcf62de0e344ad5ff3</originalsourceid><addsrcrecordid>eNptkl2L3CAUhkNp6X609B-UQC_avcjUGKPmZmFYdrsLA4V-XIvRY-KS6FaTofvva5jtdmYoIurxOa_Hl5Nl70q0KlHFPzu3qpq6fJGdljWhRckwfZn2qGEFxTU9yc5ivEcIsZo3r7MTXDNECcOn2fU6j3OrfJiskkNuXW9bO_nwmEfbuRQxPuQt9HJrfUhHGQLEKXH51EOacpDjHN9kr4wcIrx9Ws-znzfXP65ui83XL3dX602h6oZPBTDdMoahBQWsBEKblmhMGo11RRtpKuCgCdFNjbhkxChDsQYEFSFS18ZU59nlTvdhbkfQCtyUihIPwY4yPAovrTi8cbYXnd8KwnlNaZkELnYC_VHa7XojlhhK_uGKke3Cfnp6LPhfc_q1GG1UMAzSgZ-jKBmrOMEM8YR-OELv_RySfQtFKW4I36c6OYCwzvhUo1pExZogzjghnCZq9R8qDQ2jVd6BsSl-kHBxkJCYCX5PnZxjFHffvx2yH3esCj7GAObZhBKJpZOEc2LppES-37f6mfvbOv_sienKdRD2_nyk9Qdfyc8I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766294808</pqid></control><display><type>article</type><title>A subcortical inhibitory signal for behavioral arrest in the thalamus</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Giber, Kristóf ; Diana, Marco A ; M Plattner, Viktor ; Dugué, Guillaume P ; Bokor, Hajnalka ; Rousseau, Charly V ; Maglóczky, Zsófia ; Havas, László ; Hangya, Balázs ; Wildner, Hendrik ; Zeilhofer, Hanns Ulrich ; Dieudonné, Stéphane ; Acsády, László</creator><creatorcontrib>Giber, Kristóf ; Diana, Marco A ; M Plattner, Viktor ; Dugué, Guillaume P ; Bokor, Hajnalka ; Rousseau, Charly V ; Maglóczky, Zsófia ; Havas, László ; Hangya, Balázs ; Wildner, Hendrik ; Zeilhofer, Hanns Ulrich ; Dieudonné, Stéphane ; Acsády, László</creatorcontrib><description>The authors show that inhibitory neurons of the pontine reticular formation (PRF) exert powerful control over the intralaminar thalamic nuclei, a major gate of forebrain motor centers. Optogenetic activation of inhibitory PRF terminals antagonizes voluntary movements and promotes slow cortical oscillations, highlighting the contribution of brainstem ascending projections to large-scale motor circuits. Organization of behavior requires rapid coordination of brainstem and forebrain activity. The exact mechanisms of effective communication between these regions are presently unclear. The intralaminar thalamic nuclei (IL) probably serves as a central hub in this circuit by connecting the critical brainstem and forebrain areas. We found that GABAergic and glycinergic fibers ascending from the pontine reticular formation (PRF) of the brainstem evoked fast and reliable inhibition in the IL via large, multisynaptic terminals. This inhibition was fine-tuned through heterogeneous GABAergic and glycinergic receptor ratios expressed at individual synapses. Optogenetic activation of PRF axons in the IL of freely moving mice led to behavioral arrest and transient interruption of awake cortical activity. An afferent system with comparable morphological features was also found in the human IL. These data reveal an evolutionarily conserved ascending system that gates forebrain activity through fast and powerful synaptic inhibition of the IL.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3951</identifier><identifier>PMID: 25706472</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/44 ; 13/51 ; 14 ; 14/19 ; 14/28 ; 14/34 ; 631/378/2632 ; 631/378/3920 ; 64/60 ; 82 ; 9/26 ; 9/30 ; 9/74 ; Afferent Pathways - physiology ; Animal Genetics and Genomics ; Animals ; Behavior ; Behavior, Animal - physiology ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; GABAergic Neurons - physiology ; Glycine - metabolism ; Intralaminar Thalamic Nuclei - physiology ; Life Sciences ; Male ; Medical examination ; Mice ; Morphology ; Nerve Fibers - physiology ; Neural Inhibition - physiology ; Neural transmission ; Neurobiology ; Neurons and Cognition ; Neurosciences ; Optogenetics ; Patch-Clamp Techniques ; Physiological aspects ; Pontine Tegmentum - physiology ; Receptors, GABA - metabolism ; Receptors, Glycine - metabolism ; Thalamus</subject><ispartof>Nature neuroscience, 2015-04, Vol.18 (4), p.562-568</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-e7db772ebece71e469b4d249d2d369af3e8ed44d9508a74fcf62de0e344ad5ff3</citedby><cites>FETCH-LOGICAL-c598t-e7db772ebece71e469b4d249d2d369af3e8ed44d9508a74fcf62de0e344ad5ff3</cites><orcidid>0000-0002-4106-6132 ; 0000-0002-8928-0154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3951$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3951$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25706472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01542374$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Giber, Kristóf</creatorcontrib><creatorcontrib>Diana, Marco A</creatorcontrib><creatorcontrib>M Plattner, Viktor</creatorcontrib><creatorcontrib>Dugué, Guillaume P</creatorcontrib><creatorcontrib>Bokor, Hajnalka</creatorcontrib><creatorcontrib>Rousseau, Charly V</creatorcontrib><creatorcontrib>Maglóczky, Zsófia</creatorcontrib><creatorcontrib>Havas, László</creatorcontrib><creatorcontrib>Hangya, Balázs</creatorcontrib><creatorcontrib>Wildner, Hendrik</creatorcontrib><creatorcontrib>Zeilhofer, Hanns Ulrich</creatorcontrib><creatorcontrib>Dieudonné, Stéphane</creatorcontrib><creatorcontrib>Acsády, László</creatorcontrib><title>A subcortical inhibitory signal for behavioral arrest in the thalamus</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The authors show that inhibitory neurons of the pontine reticular formation (PRF) exert powerful control over the intralaminar thalamic nuclei, a major gate of forebrain motor centers. Optogenetic activation of inhibitory PRF terminals antagonizes voluntary movements and promotes slow cortical oscillations, highlighting the contribution of brainstem ascending projections to large-scale motor circuits. Organization of behavior requires rapid coordination of brainstem and forebrain activity. The exact mechanisms of effective communication between these regions are presently unclear. The intralaminar thalamic nuclei (IL) probably serves as a central hub in this circuit by connecting the critical brainstem and forebrain areas. We found that GABAergic and glycinergic fibers ascending from the pontine reticular formation (PRF) of the brainstem evoked fast and reliable inhibition in the IL via large, multisynaptic terminals. This inhibition was fine-tuned through heterogeneous GABAergic and glycinergic receptor ratios expressed at individual synapses. Optogenetic activation of PRF axons in the IL of freely moving mice led to behavioral arrest and transient interruption of awake cortical activity. An afferent system with comparable morphological features was also found in the human IL. These data reveal an evolutionarily conserved ascending system that gates forebrain activity through fast and powerful synaptic inhibition of the IL.</description><subject>13/1</subject><subject>13/44</subject><subject>13/51</subject><subject>14</subject><subject>14/19</subject><subject>14/28</subject><subject>14/34</subject><subject>631/378/2632</subject><subject>631/378/3920</subject><subject>64/60</subject><subject>82</subject><subject>9/26</subject><subject>9/30</subject><subject>9/74</subject><subject>Afferent Pathways - physiology</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavior</subject><subject>Behavior, Animal - physiology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>GABAergic Neurons - physiology</subject><subject>Glycine - metabolism</subject><subject>Intralaminar Thalamic Nuclei - physiology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Medical examination</subject><subject>Mice</subject><subject>Morphology</subject><subject>Nerve Fibers - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neural transmission</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Neurosciences</subject><subject>Optogenetics</subject><subject>Patch-Clamp Techniques</subject><subject>Physiological aspects</subject><subject>Pontine Tegmentum - physiology</subject><subject>Receptors, GABA - metabolism</subject><subject>Receptors, Glycine - metabolism</subject><subject>Thalamus</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkl2L3CAUhkNp6X609B-UQC_avcjUGKPmZmFYdrsLA4V-XIvRY-KS6FaTofvva5jtdmYoIurxOa_Hl5Nl70q0KlHFPzu3qpq6fJGdljWhRckwfZn2qGEFxTU9yc5ivEcIsZo3r7MTXDNECcOn2fU6j3OrfJiskkNuXW9bO_nwmEfbuRQxPuQt9HJrfUhHGQLEKXH51EOacpDjHN9kr4wcIrx9Ws-znzfXP65ui83XL3dX602h6oZPBTDdMoahBQWsBEKblmhMGo11RRtpKuCgCdFNjbhkxChDsQYEFSFS18ZU59nlTvdhbkfQCtyUihIPwY4yPAovrTi8cbYXnd8KwnlNaZkELnYC_VHa7XojlhhK_uGKke3Cfnp6LPhfc_q1GG1UMAzSgZ-jKBmrOMEM8YR-OELv_RySfQtFKW4I36c6OYCwzvhUo1pExZogzjghnCZq9R8qDQ2jVd6BsSl-kHBxkJCYCX5PnZxjFHffvx2yH3esCj7GAObZhBKJpZOEc2LppES-37f6mfvbOv_sienKdRD2_nyk9Qdfyc8I</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Giber, Kristóf</creator><creator>Diana, Marco A</creator><creator>M Plattner, Viktor</creator><creator>Dugué, Guillaume P</creator><creator>Bokor, Hajnalka</creator><creator>Rousseau, Charly V</creator><creator>Maglóczky, Zsófia</creator><creator>Havas, László</creator><creator>Hangya, Balázs</creator><creator>Wildner, Hendrik</creator><creator>Zeilhofer, Hanns Ulrich</creator><creator>Dieudonné, Stéphane</creator><creator>Acsády, László</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4106-6132</orcidid><orcidid>https://orcid.org/0000-0002-8928-0154</orcidid></search><sort><creationdate>20150401</creationdate><title>A subcortical inhibitory signal for behavioral arrest in the thalamus</title><author>Giber, Kristóf ; Diana, Marco A ; M Plattner, Viktor ; Dugué, Guillaume P ; Bokor, Hajnalka ; Rousseau, Charly V ; Maglóczky, Zsófia ; Havas, László ; Hangya, Balázs ; Wildner, Hendrik ; Zeilhofer, Hanns Ulrich ; Dieudonné, Stéphane ; Acsády, László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-e7db772ebece71e469b4d249d2d369af3e8ed44d9508a74fcf62de0e344ad5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/1</topic><topic>13/44</topic><topic>13/51</topic><topic>14</topic><topic>14/19</topic><topic>14/28</topic><topic>14/34</topic><topic>631/378/2632</topic><topic>631/378/3920</topic><topic>64/60</topic><topic>82</topic><topic>9/26</topic><topic>9/30</topic><topic>9/74</topic><topic>Afferent Pathways - physiology</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavior</topic><topic>Behavior, Animal - physiology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>GABAergic Neurons - physiology</topic><topic>Glycine - metabolism</topic><topic>Intralaminar Thalamic Nuclei - physiology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Medical examination</topic><topic>Mice</topic><topic>Morphology</topic><topic>Nerve Fibers - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neural transmission</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Neurosciences</topic><topic>Optogenetics</topic><topic>Patch-Clamp Techniques</topic><topic>Physiological aspects</topic><topic>Pontine Tegmentum - physiology</topic><topic>Receptors, GABA - metabolism</topic><topic>Receptors, Glycine - metabolism</topic><topic>Thalamus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giber, Kristóf</creatorcontrib><creatorcontrib>Diana, Marco A</creatorcontrib><creatorcontrib>M Plattner, Viktor</creatorcontrib><creatorcontrib>Dugué, Guillaume P</creatorcontrib><creatorcontrib>Bokor, Hajnalka</creatorcontrib><creatorcontrib>Rousseau, Charly V</creatorcontrib><creatorcontrib>Maglóczky, Zsófia</creatorcontrib><creatorcontrib>Havas, László</creatorcontrib><creatorcontrib>Hangya, Balázs</creatorcontrib><creatorcontrib>Wildner, Hendrik</creatorcontrib><creatorcontrib>Zeilhofer, Hanns Ulrich</creatorcontrib><creatorcontrib>Dieudonné, Stéphane</creatorcontrib><creatorcontrib>Acsády, László</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giber, Kristóf</au><au>Diana, Marco A</au><au>M Plattner, Viktor</au><au>Dugué, Guillaume P</au><au>Bokor, Hajnalka</au><au>Rousseau, Charly V</au><au>Maglóczky, Zsófia</au><au>Havas, László</au><au>Hangya, Balázs</au><au>Wildner, Hendrik</au><au>Zeilhofer, Hanns Ulrich</au><au>Dieudonné, Stéphane</au><au>Acsády, László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A subcortical inhibitory signal for behavioral arrest in the thalamus</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>18</volume><issue>4</issue><spage>562</spage><epage>568</epage><pages>562-568</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>The authors show that inhibitory neurons of the pontine reticular formation (PRF) exert powerful control over the intralaminar thalamic nuclei, a major gate of forebrain motor centers. Optogenetic activation of inhibitory PRF terminals antagonizes voluntary movements and promotes slow cortical oscillations, highlighting the contribution of brainstem ascending projections to large-scale motor circuits. Organization of behavior requires rapid coordination of brainstem and forebrain activity. The exact mechanisms of effective communication between these regions are presently unclear. The intralaminar thalamic nuclei (IL) probably serves as a central hub in this circuit by connecting the critical brainstem and forebrain areas. We found that GABAergic and glycinergic fibers ascending from the pontine reticular formation (PRF) of the brainstem evoked fast and reliable inhibition in the IL via large, multisynaptic terminals. This inhibition was fine-tuned through heterogeneous GABAergic and glycinergic receptor ratios expressed at individual synapses. Optogenetic activation of PRF axons in the IL of freely moving mice led to behavioral arrest and transient interruption of awake cortical activity. An afferent system with comparable morphological features was also found in the human IL. These data reveal an evolutionarily conserved ascending system that gates forebrain activity through fast and powerful synaptic inhibition of the IL.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25706472</pmid><doi>10.1038/nn.3951</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4106-6132</orcidid><orcidid>https://orcid.org/0000-0002-8928-0154</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2015-04, Vol.18 (4), p.562-568
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4885661
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13/1
13/44
13/51
14
14/19
14/28
14/34
631/378/2632
631/378/3920
64/60
82
9/26
9/30
9/74
Afferent Pathways - physiology
Animal Genetics and Genomics
Animals
Behavior
Behavior, Animal - physiology
Behavioral Sciences
Biological Techniques
Biomedicine
GABAergic Neurons - physiology
Glycine - metabolism
Intralaminar Thalamic Nuclei - physiology
Life Sciences
Male
Medical examination
Mice
Morphology
Nerve Fibers - physiology
Neural Inhibition - physiology
Neural transmission
Neurobiology
Neurons and Cognition
Neurosciences
Optogenetics
Patch-Clamp Techniques
Physiological aspects
Pontine Tegmentum - physiology
Receptors, GABA - metabolism
Receptors, Glycine - metabolism
Thalamus
title A subcortical inhibitory signal for behavioral arrest in the thalamus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20subcortical%20inhibitory%20signal%20for%20behavioral%20arrest%20in%20the%20thalamus&rft.jtitle=Nature%20neuroscience&rft.au=Giber,%20Krist%C3%B3f&rft.date=2015-04-01&rft.volume=18&rft.issue=4&rft.spage=562&rft.epage=568&rft.pages=562-568&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3951&rft_dat=%3Cgale_pubme%3EA408784486%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766294808&rft_id=info:pmid/25706472&rft_galeid=A408784486&rfr_iscdi=true