The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS
Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2016-05, Vol.291 (22), p.11887-11898 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11898 |
---|---|
container_issue | 22 |
container_start_page | 11887 |
container_title | The Journal of biological chemistry |
container_volume | 291 |
creator | Söderberg, Christopher Gillam, Mallory E Ahlgren, Eva-Christina Hunter, Gregory A Gakh, Oleksandr Isaya, Grazia Ferreira, Gloria C Al-Karadaghi, Salam |
description | Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species. |
doi_str_mv | 10.1074/jbc.M115.701128 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4882455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27026703</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-fc79da550694edd8744f1ff8d7be15957ee3b447076d6c6fdc21c54ff945f4733</originalsourceid><addsrcrecordid>eNpVkM1Og0AUhSdGY-vP2p2ZF6DOwAwDLkwIHSxJbQ1QY92QAe7YmhYaoFpfxycVf6N3c3PPuedbHITOKBlQItjFU5YPbijlA0EoNZ091KfEsQyL0_t91CfEpIZrcqeHjprmiXTDXHqIeqYgpi2I1UdvyQJw3NbbvN3WgCuN207wq_VmBTucQfsCUOI5qKbFQa1atVuWWJUFDqCuq3wBq05r4BL7Iy_y_ERG4YOXhNMJ9iZDfBtJI06kN5zjOPESiSPZ_Xy40wAHMoqmsxiHUXcP5Ti8k9H8MzaSNxLH80kyknEYn6ADrVYNnH7vYzQLZOKPjPH0OvS9sbExbbs1dC7cQnFObJdBUTiCMU21dgqRAeUuFwBWxpggwi7s3NZFbtKcM61dxjUTlnWMrr64m222hiKHsq3VKt3Uy7WqX9NKLdP_TrlcpI_Vc8ocx2Scd4Dzv4Df5E_b1jsGkX5p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Söderberg, Christopher ; Gillam, Mallory E ; Ahlgren, Eva-Christina ; Hunter, Gregory A ; Gakh, Oleksandr ; Isaya, Grazia ; Ferreira, Gloria C ; Al-Karadaghi, Salam</creator><creatorcontrib>Söderberg, Christopher ; Gillam, Mallory E ; Ahlgren, Eva-Christina ; Hunter, Gregory A ; Gakh, Oleksandr ; Isaya, Grazia ; Ferreira, Gloria C ; Al-Karadaghi, Salam</creatorcontrib><description>Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.701128</identifier><identifier>PMID: 27026703</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Crystallography, X-Ray ; Ferrochelatase - chemistry ; Ferrochelatase - metabolism ; Frataxin ; Heme - biosynthesis ; Iron - metabolism ; Iron-Binding Proteins - chemistry ; Iron-Binding Proteins - metabolism ; Kinetics ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Structure and Folding ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><ispartof>The Journal of biological chemistry, 2016-05, Vol.291 (22), p.11887-11898</ispartof><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882455/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882455/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27026703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Söderberg, Christopher</creatorcontrib><creatorcontrib>Gillam, Mallory E</creatorcontrib><creatorcontrib>Ahlgren, Eva-Christina</creatorcontrib><creatorcontrib>Hunter, Gregory A</creatorcontrib><creatorcontrib>Gakh, Oleksandr</creatorcontrib><creatorcontrib>Isaya, Grazia</creatorcontrib><creatorcontrib>Ferreira, Gloria C</creatorcontrib><creatorcontrib>Al-Karadaghi, Salam</creatorcontrib><title>The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species.</description><subject>Crystallography, X-Ray</subject><subject>Ferrochelatase - chemistry</subject><subject>Ferrochelatase - metabolism</subject><subject>Frataxin</subject><subject>Heme - biosynthesis</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins - chemistry</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure and Folding</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1Og0AUhSdGY-vP2p2ZF6DOwAwDLkwIHSxJbQ1QY92QAe7YmhYaoFpfxycVf6N3c3PPuedbHITOKBlQItjFU5YPbijlA0EoNZ091KfEsQyL0_t91CfEpIZrcqeHjprmiXTDXHqIeqYgpi2I1UdvyQJw3NbbvN3WgCuN207wq_VmBTucQfsCUOI5qKbFQa1atVuWWJUFDqCuq3wBq05r4BL7Iy_y_ERG4YOXhNMJ9iZDfBtJI06kN5zjOPESiSPZ_Xy40wAHMoqmsxiHUXcP5Ti8k9H8MzaSNxLH80kyknEYn6ADrVYNnH7vYzQLZOKPjPH0OvS9sbExbbs1dC7cQnFObJdBUTiCMU21dgqRAeUuFwBWxpggwi7s3NZFbtKcM61dxjUTlnWMrr64m222hiKHsq3VKt3Uy7WqX9NKLdP_TrlcpI_Vc8ocx2Scd4Dzv4Df5E_b1jsGkX5p</recordid><startdate>20160527</startdate><enddate>20160527</enddate><creator>Söderberg, Christopher</creator><creator>Gillam, Mallory E</creator><creator>Ahlgren, Eva-Christina</creator><creator>Hunter, Gregory A</creator><creator>Gakh, Oleksandr</creator><creator>Isaya, Grazia</creator><creator>Ferreira, Gloria C</creator><creator>Al-Karadaghi, Salam</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20160527</creationdate><title>The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS</title><author>Söderberg, Christopher ; Gillam, Mallory E ; Ahlgren, Eva-Christina ; Hunter, Gregory A ; Gakh, Oleksandr ; Isaya, Grazia ; Ferreira, Gloria C ; Al-Karadaghi, Salam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-fc79da550694edd8744f1ff8d7be15957ee3b447076d6c6fdc21c54ff945f4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Crystallography, X-Ray</topic><topic>Ferrochelatase - chemistry</topic><topic>Ferrochelatase - metabolism</topic><topic>Frataxin</topic><topic>Heme - biosynthesis</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins - chemistry</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure and Folding</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Söderberg, Christopher</creatorcontrib><creatorcontrib>Gillam, Mallory E</creatorcontrib><creatorcontrib>Ahlgren, Eva-Christina</creatorcontrib><creatorcontrib>Hunter, Gregory A</creatorcontrib><creatorcontrib>Gakh, Oleksandr</creatorcontrib><creatorcontrib>Isaya, Grazia</creatorcontrib><creatorcontrib>Ferreira, Gloria C</creatorcontrib><creatorcontrib>Al-Karadaghi, Salam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Söderberg, Christopher</au><au>Gillam, Mallory E</au><au>Ahlgren, Eva-Christina</au><au>Hunter, Gregory A</au><au>Gakh, Oleksandr</au><au>Isaya, Grazia</au><au>Ferreira, Gloria C</au><au>Al-Karadaghi, Salam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-05-27</date><risdate>2016</risdate><volume>291</volume><issue>22</issue><spage>11887</spage><epage>11898</epage><pages>11887-11898</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>27026703</pmid><doi>10.1074/jbc.M115.701128</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2016-05, Vol.291 (22), p.11887-11898 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4882455 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Crystallography, X-Ray Ferrochelatase - chemistry Ferrochelatase - metabolism Frataxin Heme - biosynthesis Iron - metabolism Iron-Binding Proteins - chemistry Iron-Binding Proteins - metabolism Kinetics Models, Molecular Protein Binding Protein Conformation Protein Structure and Folding Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization |
title | The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20the%20Complex%20between%20Yeast%20Frataxin%20and%20Ferrochelatase:%20CHARACTERIZATION%20AND%20PRE-STEADY%20STATE%20REACTION%20OF%20FERROUS%20IRON%20DELIVERY%20AND%20HEME%20SYNTHESIS&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=S%C3%B6derberg,%20Christopher&rft.date=2016-05-27&rft.volume=291&rft.issue=22&rft.spage=11887&rft.epage=11898&rft.pages=11887-11898&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.701128&rft_dat=%3Cpubmed%3E27026703%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27026703&rfr_iscdi=true |