The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS

Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2016-05, Vol.291 (22), p.11887-11898
Hauptverfasser: Söderberg, Christopher, Gillam, Mallory E, Ahlgren, Eva-Christina, Hunter, Gregory A, Gakh, Oleksandr, Isaya, Grazia, Ferreira, Gloria C, Al-Karadaghi, Salam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11898
container_issue 22
container_start_page 11887
container_title The Journal of biological chemistry
container_volume 291
creator Söderberg, Christopher
Gillam, Mallory E
Ahlgren, Eva-Christina
Hunter, Gregory A
Gakh, Oleksandr
Isaya, Grazia
Ferreira, Gloria C
Al-Karadaghi, Salam
description Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species.
doi_str_mv 10.1074/jbc.M115.701128
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4882455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27026703</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-fc79da550694edd8744f1ff8d7be15957ee3b447076d6c6fdc21c54ff945f4733</originalsourceid><addsrcrecordid>eNpVkM1Og0AUhSdGY-vP2p2ZF6DOwAwDLkwIHSxJbQ1QY92QAe7YmhYaoFpfxycVf6N3c3PPuedbHITOKBlQItjFU5YPbijlA0EoNZ091KfEsQyL0_t91CfEpIZrcqeHjprmiXTDXHqIeqYgpi2I1UdvyQJw3NbbvN3WgCuN207wq_VmBTucQfsCUOI5qKbFQa1atVuWWJUFDqCuq3wBq05r4BL7Iy_y_ERG4YOXhNMJ9iZDfBtJI06kN5zjOPESiSPZ_Xy40wAHMoqmsxiHUXcP5Ti8k9H8MzaSNxLH80kyknEYn6ADrVYNnH7vYzQLZOKPjPH0OvS9sbExbbs1dC7cQnFObJdBUTiCMU21dgqRAeUuFwBWxpggwi7s3NZFbtKcM61dxjUTlnWMrr64m222hiKHsq3VKt3Uy7WqX9NKLdP_TrlcpI_Vc8ocx2Scd4Dzv4Df5E_b1jsGkX5p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Söderberg, Christopher ; Gillam, Mallory E ; Ahlgren, Eva-Christina ; Hunter, Gregory A ; Gakh, Oleksandr ; Isaya, Grazia ; Ferreira, Gloria C ; Al-Karadaghi, Salam</creator><creatorcontrib>Söderberg, Christopher ; Gillam, Mallory E ; Ahlgren, Eva-Christina ; Hunter, Gregory A ; Gakh, Oleksandr ; Isaya, Grazia ; Ferreira, Gloria C ; Al-Karadaghi, Salam</creatorcontrib><description>Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.701128</identifier><identifier>PMID: 27026703</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Crystallography, X-Ray ; Ferrochelatase - chemistry ; Ferrochelatase - metabolism ; Frataxin ; Heme - biosynthesis ; Iron - metabolism ; Iron-Binding Proteins - chemistry ; Iron-Binding Proteins - metabolism ; Kinetics ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Structure and Folding ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><ispartof>The Journal of biological chemistry, 2016-05, Vol.291 (22), p.11887-11898</ispartof><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882455/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882455/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27026703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Söderberg, Christopher</creatorcontrib><creatorcontrib>Gillam, Mallory E</creatorcontrib><creatorcontrib>Ahlgren, Eva-Christina</creatorcontrib><creatorcontrib>Hunter, Gregory A</creatorcontrib><creatorcontrib>Gakh, Oleksandr</creatorcontrib><creatorcontrib>Isaya, Grazia</creatorcontrib><creatorcontrib>Ferreira, Gloria C</creatorcontrib><creatorcontrib>Al-Karadaghi, Salam</creatorcontrib><title>The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species.</description><subject>Crystallography, X-Ray</subject><subject>Ferrochelatase - chemistry</subject><subject>Ferrochelatase - metabolism</subject><subject>Frataxin</subject><subject>Heme - biosynthesis</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins - chemistry</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure and Folding</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1Og0AUhSdGY-vP2p2ZF6DOwAwDLkwIHSxJbQ1QY92QAe7YmhYaoFpfxycVf6N3c3PPuedbHITOKBlQItjFU5YPbijlA0EoNZ091KfEsQyL0_t91CfEpIZrcqeHjprmiXTDXHqIeqYgpi2I1UdvyQJw3NbbvN3WgCuN207wq_VmBTucQfsCUOI5qKbFQa1atVuWWJUFDqCuq3wBq05r4BL7Iy_y_ERG4YOXhNMJ9iZDfBtJI06kN5zjOPESiSPZ_Xy40wAHMoqmsxiHUXcP5Ti8k9H8MzaSNxLH80kyknEYn6ADrVYNnH7vYzQLZOKPjPH0OvS9sbExbbs1dC7cQnFObJdBUTiCMU21dgqRAeUuFwBWxpggwi7s3NZFbtKcM61dxjUTlnWMrr64m222hiKHsq3VKt3Uy7WqX9NKLdP_TrlcpI_Vc8ocx2Scd4Dzv4Df5E_b1jsGkX5p</recordid><startdate>20160527</startdate><enddate>20160527</enddate><creator>Söderberg, Christopher</creator><creator>Gillam, Mallory E</creator><creator>Ahlgren, Eva-Christina</creator><creator>Hunter, Gregory A</creator><creator>Gakh, Oleksandr</creator><creator>Isaya, Grazia</creator><creator>Ferreira, Gloria C</creator><creator>Al-Karadaghi, Salam</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20160527</creationdate><title>The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS</title><author>Söderberg, Christopher ; Gillam, Mallory E ; Ahlgren, Eva-Christina ; Hunter, Gregory A ; Gakh, Oleksandr ; Isaya, Grazia ; Ferreira, Gloria C ; Al-Karadaghi, Salam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-fc79da550694edd8744f1ff8d7be15957ee3b447076d6c6fdc21c54ff945f4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Crystallography, X-Ray</topic><topic>Ferrochelatase - chemistry</topic><topic>Ferrochelatase - metabolism</topic><topic>Frataxin</topic><topic>Heme - biosynthesis</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins - chemistry</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure and Folding</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Söderberg, Christopher</creatorcontrib><creatorcontrib>Gillam, Mallory E</creatorcontrib><creatorcontrib>Ahlgren, Eva-Christina</creatorcontrib><creatorcontrib>Hunter, Gregory A</creatorcontrib><creatorcontrib>Gakh, Oleksandr</creatorcontrib><creatorcontrib>Isaya, Grazia</creatorcontrib><creatorcontrib>Ferreira, Gloria C</creatorcontrib><creatorcontrib>Al-Karadaghi, Salam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Söderberg, Christopher</au><au>Gillam, Mallory E</au><au>Ahlgren, Eva-Christina</au><au>Hunter, Gregory A</au><au>Gakh, Oleksandr</au><au>Isaya, Grazia</au><au>Ferreira, Gloria C</au><au>Al-Karadaghi, Salam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-05-27</date><risdate>2016</risdate><volume>291</volume><issue>22</issue><spage>11887</spage><epage>11898</epage><pages>11887-11898</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>27026703</pmid><doi>10.1074/jbc.M115.701128</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-05, Vol.291 (22), p.11887-11898
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4882455
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Crystallography, X-Ray
Ferrochelatase - chemistry
Ferrochelatase - metabolism
Frataxin
Heme - biosynthesis
Iron - metabolism
Iron-Binding Proteins - chemistry
Iron-Binding Proteins - metabolism
Kinetics
Models, Molecular
Protein Binding
Protein Conformation
Protein Structure and Folding
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
title The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20the%20Complex%20between%20Yeast%20Frataxin%20and%20Ferrochelatase:%20CHARACTERIZATION%20AND%20PRE-STEADY%20STATE%20REACTION%20OF%20FERROUS%20IRON%20DELIVERY%20AND%20HEME%20SYNTHESIS&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=S%C3%B6derberg,%20Christopher&rft.date=2016-05-27&rft.volume=291&rft.issue=22&rft.spage=11887&rft.epage=11898&rft.pages=11887-11898&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.701128&rft_dat=%3Cpubmed%3E27026703%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27026703&rfr_iscdi=true