Argonaute 2-dependent Regulation of Gene Expression by Single-stranded miRNA Mimics

MicroRNAs (miRNAs) are small noncoding transcripts that regulate gene expression. Aberrant expression of miRNAs can affect development of cancer and other diseases. Synthetic miRNA mimics can modulate gene expression and offer an approach to therapy. Inside cells, mature miRNAs are produced as doubl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2016-05, Vol.24 (5), p.946-955
Hauptverfasser: Matsui, Masayuki, Prakash, Thazha P, Corey, David R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 955
container_issue 5
container_start_page 946
container_title Molecular therapy
container_volume 24
creator Matsui, Masayuki
Prakash, Thazha P
Corey, David R
description MicroRNAs (miRNAs) are small noncoding transcripts that regulate gene expression. Aberrant expression of miRNAs can affect development of cancer and other diseases. Synthetic miRNA mimics can modulate gene expression and offer an approach to therapy. Inside cells, mature miRNAs are produced as double-stranded RNAs and miRNA mimics typically retain both strands. This need for two strands has the potential to complicate drug development. Recently, synthetic chemically modified single-stranded silencing RNAs (ss-siRNA) have been shown to function through the RNAi pathway to induce gene silencing in cell culture and animals. Here, we test the hypothesis that single-stranded miRNA (ss-miRNA) can also mimic the function of miRNAs. We show that ss-miRNAs can act as miRNA mimics to silence the expression of target genes. Gene silencing requires expression of argonaute 2 (AGO2) protein and involves recruitment of AGO2 to the target transcripts. Chemically modified ss-miRNAs function effectively inside cells through endogenous RNAi pathways and broaden the options for miRNA-based oligonucleotide drug development.
doi_str_mv 10.1038/mt.2016.39
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4881773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001616302210</els_id><sourcerecordid>4061957211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-51be95a37a7adce347382697e5b8a3ca5f955de8c1af233dd78c2781d97ef1933</originalsourceid><addsrcrecordid>eNqFkVFLHDEUhYO0VKt98QeUgb5IYdZkMpkkL4VF1ApWQdvnkE3ubCMzyZpkRP99s127aCn0KZfky-HccxA6JHhGMBXHY541mHQzKnfQHmENqzFu2jfbmXS76H1Kd2UiTHbv0G7TSUwp7_bQ7Twug9dThqqpLazAW_C5uoHlNOjsgq9CX52Dh-r0cRUhpfXV4qm6dX45QJ1y1OWHrUZ3czWvvrnRmXSA3vZ6SPDh-dxHP85Ov598rS-vzy9O5pe1aUWba0YWIJmmXHNtDdCWU1GMcWALoanRrJeMWRCG6L6h1FouTMMFsQXpiaR0H33Z6K6mxQhFwhc3g1pFN-r4pIJ26vWLdz_VMjyoVgjC-Vrg6FkghvsJUlajSwaGQXsIU1JEYNERQaX4P8olbjteAi_op7_QuzBFX5L4TeFivWsK9XlDmRhSitBvfROs1rWqMat1rYrKAn98uekW_dNjAdoNACXvBwdRJePAG7AugsnKBvcv3V85bK7u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790019362</pqid></control><display><type>article</type><title>Argonaute 2-dependent Regulation of Gene Expression by Single-stranded miRNA Mimics</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Matsui, Masayuki ; Prakash, Thazha P ; Corey, David R</creator><creatorcontrib>Matsui, Masayuki ; Prakash, Thazha P ; Corey, David R</creatorcontrib><description>MicroRNAs (miRNAs) are small noncoding transcripts that regulate gene expression. Aberrant expression of miRNAs can affect development of cancer and other diseases. Synthetic miRNA mimics can modulate gene expression and offer an approach to therapy. Inside cells, mature miRNAs are produced as double-stranded RNAs and miRNA mimics typically retain both strands. This need for two strands has the potential to complicate drug development. Recently, synthetic chemically modified single-stranded silencing RNAs (ss-siRNA) have been shown to function through the RNAi pathway to induce gene silencing in cell culture and animals. Here, we test the hypothesis that single-stranded miRNA (ss-miRNA) can also mimic the function of miRNAs. We show that ss-miRNAs can act as miRNA mimics to silence the expression of target genes. Gene silencing requires expression of argonaute 2 (AGO2) protein and involves recruitment of AGO2 to the target transcripts. Chemically modified ss-miRNAs function effectively inside cells through endogenous RNAi pathways and broaden the options for miRNA-based oligonucleotide drug development.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1038/mt.2016.39</identifier><identifier>PMID: 26903376</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>A549 Cells ; Animals ; Argonaute Proteins - genetics ; Argonaute Proteins - metabolism ; Biochemistry ; Biomimetic Materials - chemical synthesis ; Biomimetic Materials - chemistry ; Biomimetic Materials - pharmacology ; Cell culture ; Gene expression ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Silencing ; HeLa Cells ; Hep G2 Cells ; Humans ; MicroRNAs ; MicroRNAs - chemical synthesis ; MicroRNAs - genetics ; Molecular Mimicry ; Original ; Proteins</subject><ispartof>Molecular therapy, 2016-05, Vol.24 (5), p.946-955</ispartof><rights>2016 Official journal of the American Society of Gene &amp; Cell Therapy</rights><rights>Copyright Nature Publishing Group May 2016</rights><rights>Copyright © 2016 Official journal of the American Society of Gene &amp; Cell Therapy 2016 Official journal of the American Society of Gene &amp; Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-51be95a37a7adce347382697e5b8a3ca5f955de8c1af233dd78c2781d97ef1933</citedby><cites>FETCH-LOGICAL-c484t-51be95a37a7adce347382697e5b8a3ca5f955de8c1af233dd78c2781d97ef1933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881773/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881773/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26903376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsui, Masayuki</creatorcontrib><creatorcontrib>Prakash, Thazha P</creatorcontrib><creatorcontrib>Corey, David R</creatorcontrib><title>Argonaute 2-dependent Regulation of Gene Expression by Single-stranded miRNA Mimics</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>MicroRNAs (miRNAs) are small noncoding transcripts that regulate gene expression. Aberrant expression of miRNAs can affect development of cancer and other diseases. Synthetic miRNA mimics can modulate gene expression and offer an approach to therapy. Inside cells, mature miRNAs are produced as double-stranded RNAs and miRNA mimics typically retain both strands. This need for two strands has the potential to complicate drug development. Recently, synthetic chemically modified single-stranded silencing RNAs (ss-siRNA) have been shown to function through the RNAi pathway to induce gene silencing in cell culture and animals. Here, we test the hypothesis that single-stranded miRNA (ss-miRNA) can also mimic the function of miRNAs. We show that ss-miRNAs can act as miRNA mimics to silence the expression of target genes. Gene silencing requires expression of argonaute 2 (AGO2) protein and involves recruitment of AGO2 to the target transcripts. Chemically modified ss-miRNAs function effectively inside cells through endogenous RNAi pathways and broaden the options for miRNA-based oligonucleotide drug development.</description><subject>A549 Cells</subject><subject>Animals</subject><subject>Argonaute Proteins - genetics</subject><subject>Argonaute Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - pharmacology</subject><subject>Cell culture</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Silencing</subject><subject>HeLa Cells</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>MicroRNAs</subject><subject>MicroRNAs - chemical synthesis</subject><subject>MicroRNAs - genetics</subject><subject>Molecular Mimicry</subject><subject>Original</subject><subject>Proteins</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkVFLHDEUhYO0VKt98QeUgb5IYdZkMpkkL4VF1ApWQdvnkE3ubCMzyZpkRP99s127aCn0KZfky-HccxA6JHhGMBXHY541mHQzKnfQHmENqzFu2jfbmXS76H1Kd2UiTHbv0G7TSUwp7_bQ7Twug9dThqqpLazAW_C5uoHlNOjsgq9CX52Dh-r0cRUhpfXV4qm6dX45QJ1y1OWHrUZ3czWvvrnRmXSA3vZ6SPDh-dxHP85Ov598rS-vzy9O5pe1aUWba0YWIJmmXHNtDdCWU1GMcWALoanRrJeMWRCG6L6h1FouTMMFsQXpiaR0H33Z6K6mxQhFwhc3g1pFN-r4pIJ26vWLdz_VMjyoVgjC-Vrg6FkghvsJUlajSwaGQXsIU1JEYNERQaX4P8olbjteAi_op7_QuzBFX5L4TeFivWsK9XlDmRhSitBvfROs1rWqMat1rYrKAn98uekW_dNjAdoNACXvBwdRJePAG7AugsnKBvcv3V85bK7u</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Matsui, Masayuki</creator><creator>Prakash, Thazha P</creator><creator>Corey, David R</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160501</creationdate><title>Argonaute 2-dependent Regulation of Gene Expression by Single-stranded miRNA Mimics</title><author>Matsui, Masayuki ; Prakash, Thazha P ; Corey, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-51be95a37a7adce347382697e5b8a3ca5f955de8c1af233dd78c2781d97ef1933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A549 Cells</topic><topic>Animals</topic><topic>Argonaute Proteins - genetics</topic><topic>Argonaute Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - pharmacology</topic><topic>Cell culture</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Silencing</topic><topic>HeLa Cells</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>MicroRNAs</topic><topic>MicroRNAs - chemical synthesis</topic><topic>MicroRNAs - genetics</topic><topic>Molecular Mimicry</topic><topic>Original</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsui, Masayuki</creatorcontrib><creatorcontrib>Prakash, Thazha P</creatorcontrib><creatorcontrib>Corey, David R</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsui, Masayuki</au><au>Prakash, Thazha P</au><au>Corey, David R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Argonaute 2-dependent Regulation of Gene Expression by Single-stranded miRNA Mimics</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>24</volume><issue>5</issue><spage>946</spage><epage>955</epage><pages>946-955</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>MicroRNAs (miRNAs) are small noncoding transcripts that regulate gene expression. Aberrant expression of miRNAs can affect development of cancer and other diseases. Synthetic miRNA mimics can modulate gene expression and offer an approach to therapy. Inside cells, mature miRNAs are produced as double-stranded RNAs and miRNA mimics typically retain both strands. This need for two strands has the potential to complicate drug development. Recently, synthetic chemically modified single-stranded silencing RNAs (ss-siRNA) have been shown to function through the RNAi pathway to induce gene silencing in cell culture and animals. Here, we test the hypothesis that single-stranded miRNA (ss-miRNA) can also mimic the function of miRNAs. We show that ss-miRNAs can act as miRNA mimics to silence the expression of target genes. Gene silencing requires expression of argonaute 2 (AGO2) protein and involves recruitment of AGO2 to the target transcripts. Chemically modified ss-miRNAs function effectively inside cells through endogenous RNAi pathways and broaden the options for miRNA-based oligonucleotide drug development.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26903376</pmid><doi>10.1038/mt.2016.39</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2016-05, Vol.24 (5), p.946-955
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4881773
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects A549 Cells
Animals
Argonaute Proteins - genetics
Argonaute Proteins - metabolism
Biochemistry
Biomimetic Materials - chemical synthesis
Biomimetic Materials - chemistry
Biomimetic Materials - pharmacology
Cell culture
Gene expression
Gene Expression Regulation, Neoplastic - drug effects
Gene Silencing
HeLa Cells
Hep G2 Cells
Humans
MicroRNAs
MicroRNAs - chemical synthesis
MicroRNAs - genetics
Molecular Mimicry
Original
Proteins
title Argonaute 2-dependent Regulation of Gene Expression by Single-stranded miRNA Mimics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Argonaute%202-dependent%20Regulation%20of%20Gene%20Expression%20by%20Single-stranded%20miRNA%20Mimics&rft.jtitle=Molecular%20therapy&rft.au=Matsui,%20Masayuki&rft.date=2016-05-01&rft.volume=24&rft.issue=5&rft.spage=946&rft.epage=955&rft.pages=946-955&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1038/mt.2016.39&rft_dat=%3Cproquest_pubme%3E4061957211%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790019362&rft_id=info:pmid/26903376&rft_els_id=S1525001616302210&rfr_iscdi=true