Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries
The energy density of current lithium-ion batteries (LIBs) based on layered LiMO 2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this r...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-05, Vol.6 (1), p.26532-26532, Article 26532 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26532 |
---|---|
container_issue | 1 |
container_start_page | 26532 |
container_title | Scientific reports |
container_volume | 6 |
creator | Mohanty, Debasish Dahlberg, Kevin King, David M. David, Lamuel A. Sefat, Athena S. Wood, David L. Daniel, Claus Dhar, Subhash Mahajan, Vishal Lee, Myongjai Albano, Fabio |
description | The energy density of current lithium-ion batteries (LIBs) based on layered LiMO
2
cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO
2
) and alumina (Al
2
O
3
) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al
2
O
3
coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/−1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al
2
O
3
coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al
2
O
3
-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs. |
doi_str_mv | 10.1038/srep26532 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4880920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898668937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-9d3a975f23328a9baec54ad669954826900266b2fba56d581cbe03319d6d5b4f3</originalsourceid><addsrcrecordid>eNplks1u1DAUhSMEolXpghdAFmwoUsCxEyfuAmlI6Y80HSoobC3HuZm4SuzBdirNm_C4uEoZDeCNbd3P5x5fnSR5meH3GabVB-9gQ1hByZPkkOC8SAkl5One-SA59v4Ox1UQnmf8eXJASkIYLrPD5Ne1bXWnlQzaGmQ7tNLpV616dF5foNV1jaRp0apeoFqG3rbgUbNFi2BHrdBSbsGhM9hYrx-en6IbB_dggjZr9G1ynVSAbnrpAd06aWbIo846dKnXffrDDkGuAS116PU0plfRwScZAjgN_kXyrJODh-PH_Sj5fv75tr5Ml18ururFMlU5K0LKWyp5WXSEUlJJ3khQRS5bxjgv8oowjjFhrCFdIwvWFlWmGsCUZryNtybv6FHycdbdTM0IrYr2nRzExulRuq2wUou_K0b3Ym3vRV5VmBMcBV7PAtYHLbzSAVSvrDGggshIEUfOIvT2sYuzPyfwQYzaKxgGacBOXmQlJ7TMKacRffMPemcnZ-IMRFbxirGK0zJSJzOlnPUxAt3OcYbFQy7ELheRfbX_xR35JwUReDcDPpbMGtxey__UfgNCXMFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898668937</pqid></control><display><type>article</type><title>Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Mohanty, Debasish ; Dahlberg, Kevin ; King, David M. ; David, Lamuel A. ; Sefat, Athena S. ; Wood, David L. ; Daniel, Claus ; Dhar, Subhash ; Mahajan, Vishal ; Lee, Myongjai ; Albano, Fabio</creator><creatorcontrib>Mohanty, Debasish ; Dahlberg, Kevin ; King, David M. ; David, Lamuel A. ; Sefat, Athena S. ; Wood, David L. ; Daniel, Claus ; Dhar, Subhash ; Mahajan, Vishal ; Lee, Myongjai ; Albano, Fabio ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>The energy density of current lithium-ion batteries (LIBs) based on layered LiMO
2
cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO
2
) and alumina (Al
2
O
3
) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al
2
O
3
coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/−1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al
2
O
3
coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al
2
O
3
-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep26532</identifier><identifier>PMID: 27226071</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/4079/891 ; Aluminum ; Cathodes ; Electric vehicles ; ENERGY STORAGE ; Energy utilization ; Humanities and Social Sciences ; Internal combustion engines ; Lithium ; multidisciplinary ; Phase transitions ; Science ; Titanium ; Titanium dioxide ; Voltage</subject><ispartof>Scientific reports, 2016-05, Vol.6 (1), p.26532-26532, Article 26532</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group May 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-9d3a975f23328a9baec54ad669954826900266b2fba56d581cbe03319d6d5b4f3</citedby><cites>FETCH-LOGICAL-c465t-9d3a975f23328a9baec54ad669954826900266b2fba56d581cbe03319d6d5b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880920/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880920/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27226071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1259416$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohanty, Debasish</creatorcontrib><creatorcontrib>Dahlberg, Kevin</creatorcontrib><creatorcontrib>King, David M.</creatorcontrib><creatorcontrib>David, Lamuel A.</creatorcontrib><creatorcontrib>Sefat, Athena S.</creatorcontrib><creatorcontrib>Wood, David L.</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Dhar, Subhash</creatorcontrib><creatorcontrib>Mahajan, Vishal</creatorcontrib><creatorcontrib>Lee, Myongjai</creatorcontrib><creatorcontrib>Albano, Fabio</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The energy density of current lithium-ion batteries (LIBs) based on layered LiMO
2
cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO
2
) and alumina (Al
2
O
3
) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al
2
O
3
coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/−1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al
2
O
3
coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al
2
O
3
-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.</description><subject>639/4077/4079/891</subject><subject>Aluminum</subject><subject>Cathodes</subject><subject>Electric vehicles</subject><subject>ENERGY STORAGE</subject><subject>Energy utilization</subject><subject>Humanities and Social Sciences</subject><subject>Internal combustion engines</subject><subject>Lithium</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Science</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Voltage</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplks1u1DAUhSMEolXpghdAFmwoUsCxEyfuAmlI6Y80HSoobC3HuZm4SuzBdirNm_C4uEoZDeCNbd3P5x5fnSR5meH3GabVB-9gQ1hByZPkkOC8SAkl5One-SA59v4Ox1UQnmf8eXJASkIYLrPD5Ne1bXWnlQzaGmQ7tNLpV616dF5foNV1jaRp0apeoFqG3rbgUbNFi2BHrdBSbsGhM9hYrx-en6IbB_dggjZr9G1ynVSAbnrpAd06aWbIo846dKnXffrDDkGuAS116PU0plfRwScZAjgN_kXyrJODh-PH_Sj5fv75tr5Ml18ururFMlU5K0LKWyp5WXSEUlJJ3khQRS5bxjgv8oowjjFhrCFdIwvWFlWmGsCUZryNtybv6FHycdbdTM0IrYr2nRzExulRuq2wUou_K0b3Ym3vRV5VmBMcBV7PAtYHLbzSAVSvrDGggshIEUfOIvT2sYuzPyfwQYzaKxgGacBOXmQlJ7TMKacRffMPemcnZ-IMRFbxirGK0zJSJzOlnPUxAt3OcYbFQy7ELheRfbX_xR35JwUReDcDPpbMGtxey__UfgNCXMFQ</recordid><startdate>20160526</startdate><enddate>20160526</enddate><creator>Mohanty, Debasish</creator><creator>Dahlberg, Kevin</creator><creator>King, David M.</creator><creator>David, Lamuel A.</creator><creator>Sefat, Athena S.</creator><creator>Wood, David L.</creator><creator>Daniel, Claus</creator><creator>Dhar, Subhash</creator><creator>Mahajan, Vishal</creator><creator>Lee, Myongjai</creator><creator>Albano, Fabio</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160526</creationdate><title>Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries</title><author>Mohanty, Debasish ; Dahlberg, Kevin ; King, David M. ; David, Lamuel A. ; Sefat, Athena S. ; Wood, David L. ; Daniel, Claus ; Dhar, Subhash ; Mahajan, Vishal ; Lee, Myongjai ; Albano, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-9d3a975f23328a9baec54ad669954826900266b2fba56d581cbe03319d6d5b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/4077/4079/891</topic><topic>Aluminum</topic><topic>Cathodes</topic><topic>Electric vehicles</topic><topic>ENERGY STORAGE</topic><topic>Energy utilization</topic><topic>Humanities and Social Sciences</topic><topic>Internal combustion engines</topic><topic>Lithium</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Science</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Debasish</creatorcontrib><creatorcontrib>Dahlberg, Kevin</creatorcontrib><creatorcontrib>King, David M.</creatorcontrib><creatorcontrib>David, Lamuel A.</creatorcontrib><creatorcontrib>Sefat, Athena S.</creatorcontrib><creatorcontrib>Wood, David L.</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Dhar, Subhash</creatorcontrib><creatorcontrib>Mahajan, Vishal</creatorcontrib><creatorcontrib>Lee, Myongjai</creatorcontrib><creatorcontrib>Albano, Fabio</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, Debasish</au><au>Dahlberg, Kevin</au><au>King, David M.</au><au>David, Lamuel A.</au><au>Sefat, Athena S.</au><au>Wood, David L.</au><au>Daniel, Claus</au><au>Dhar, Subhash</au><au>Mahajan, Vishal</au><au>Lee, Myongjai</au><au>Albano, Fabio</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-05-26</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>26532</spage><epage>26532</epage><pages>26532-26532</pages><artnum>26532</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The energy density of current lithium-ion batteries (LIBs) based on layered LiMO
2
cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO
2
) and alumina (Al
2
O
3
) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al
2
O
3
coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/−1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al
2
O
3
coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al
2
O
3
-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27226071</pmid><doi>10.1038/srep26532</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-05, Vol.6 (1), p.26532-26532, Article 26532 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4880920 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/4077/4079/891 Aluminum Cathodes Electric vehicles ENERGY STORAGE Energy utilization Humanities and Social Sciences Internal combustion engines Lithium multidisciplinary Phase transitions Science Titanium Titanium dioxide Voltage |
title | Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20Ni-Rich%20FCG%20NMC%20and%20NCA%20Cathodes%20by%20Atomic%20Layer%20Deposition:%20Preventing%20Surface%20Phase%20Transitions%20for%20High-Voltage%20Lithium-Ion%20Batteries&rft.jtitle=Scientific%20reports&rft.au=Mohanty,%20Debasish&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2016-05-26&rft.volume=6&rft.issue=1&rft.spage=26532&rft.epage=26532&rft.pages=26532-26532&rft.artnum=26532&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep26532&rft_dat=%3Cproquest_pubme%3E1898668937%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898668937&rft_id=info:pmid/27226071&rfr_iscdi=true |