Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans

In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-05, Vol.113 (20), p.E2832-E2841
Hauptverfasser: Wei, Yuehua, Kenyon, Cynthia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E2841
container_issue 20
container_start_page E2832
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Wei, Yuehua
Kenyon, Cynthia
description In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H₂S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H₂S and ROS. These kri-1–dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H₂S and, remarkably, kri-1–dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1–dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity.
doi_str_mv 10.1073/pnas.1524727113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4878494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26469935</jstor_id><sourcerecordid>26469935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-ed4fb40ac790e6b8a5d156cfbefd7c4e4d2936a763d481b362e525dc39e4efb93</originalsourceid><addsrcrecordid>eNqF0ctr3DAQB2BRGppt2nNPLYJeenGil_W4FMLSFwQCSXoWsjX2avFKW8kO7H9fm02TtpecdJhvBs38EHpHyTklil_soyvntGZCMUUpf4FWlBhaSWHIS7QihKlKCyZO0etStoQQU2vyCp3OWBDJ2Qr1N2mAgruU8c31LXbR483B59RDxGUauuABh4jHDeAhxR7uw3jAGco-xQJ4TLiHvBtCXMqlLHTtIKa8cY0PYygYBuhdLG_QSeeGAm8f3jP08-uXu_X36ur624_15VXVCiXHCrzoGkFcqwwB2WhXe1rLtmug86oVIDwzXDoluReaNlwyqFntW25AQNcYfoY-H-fup2YHvoU4ZjfYfQ47lw82uWD_rcSwsX26t0IrLYyYB3x6GJDTrwnKaHehtDAMLkKaiqWaaKkN0fp5Oi9BGCesnunH_-g2TTnOl1gUl5QSoWZ1cVRtno-ZoXv8NyV2ydsuedunvOeOD3-v--j_BDyD90ewLWPKT3UppDG85r8BzuuyHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793611047</pqid></control><display><type>article</type><title>Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Wei, Yuehua ; Kenyon, Cynthia</creator><creatorcontrib>Wei, Yuehua ; Kenyon, Cynthia</creatorcontrib><description>In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H₂S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H₂S and ROS. These kri-1–dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H₂S and, remarkably, kri-1–dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1–dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1524727113</identifier><identifier>PMID: 27140632</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active Transport, Cell Nucleus ; Aging ; Animals ; Bacteria ; Biological Sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - cytology ; Caenorhabditis elegans - physiology ; Caenorhabditis elegans Proteins - metabolism ; Cytoskeleton ; Cytotoxicity ; DNA-Binding Proteins - metabolism ; Germ Cells - physiology ; Hydrogen Sulfide - metabolism ; Intracellular Signaling Peptides and Proteins - metabolism ; Longevity ; Mitochondria ; Mitochondrial Dynamics ; Organelle Biogenesis ; Oxidation-Reduction ; PNAS Plus ; Reactive Oxygen Species - metabolism ; Signal Transduction ; Transcription Factors - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-05, Vol.113 (20), p.E2832-E2841</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences May 17, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-ed4fb40ac790e6b8a5d156cfbefd7c4e4d2936a763d481b362e525dc39e4efb93</citedby><cites>FETCH-LOGICAL-c476t-ed4fb40ac790e6b8a5d156cfbefd7c4e4d2936a763d481b362e525dc39e4efb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26469935$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26469935$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27140632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Yuehua</creatorcontrib><creatorcontrib>Kenyon, Cynthia</creatorcontrib><title>Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H₂S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H₂S and ROS. These kri-1–dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H₂S and, remarkably, kri-1–dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1–dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity.</description><subject>Active Transport, Cell Nucleus</subject><subject>Aging</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cytoskeleton</subject><subject>Cytotoxicity</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Germ Cells - physiology</subject><subject>Hydrogen Sulfide - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Longevity</subject><subject>Mitochondria</subject><subject>Mitochondrial Dynamics</subject><subject>Organelle Biogenesis</subject><subject>Oxidation-Reduction</subject><subject>PNAS Plus</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Signal Transduction</subject><subject>Transcription Factors - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctr3DAQB2BRGppt2nNPLYJeenGil_W4FMLSFwQCSXoWsjX2avFKW8kO7H9fm02TtpecdJhvBs38EHpHyTklil_soyvntGZCMUUpf4FWlBhaSWHIS7QihKlKCyZO0etStoQQU2vyCp3OWBDJ2Qr1N2mAgruU8c31LXbR483B59RDxGUauuABh4jHDeAhxR7uw3jAGco-xQJ4TLiHvBtCXMqlLHTtIKa8cY0PYygYBuhdLG_QSeeGAm8f3jP08-uXu_X36ur624_15VXVCiXHCrzoGkFcqwwB2WhXe1rLtmug86oVIDwzXDoluReaNlwyqFntW25AQNcYfoY-H-fup2YHvoU4ZjfYfQ47lw82uWD_rcSwsX26t0IrLYyYB3x6GJDTrwnKaHehtDAMLkKaiqWaaKkN0fp5Oi9BGCesnunH_-g2TTnOl1gUl5QSoWZ1cVRtno-ZoXv8NyV2ydsuedunvOeOD3-v--j_BDyD90ewLWPKT3UppDG85r8BzuuyHg</recordid><startdate>20160517</startdate><enddate>20160517</enddate><creator>Wei, Yuehua</creator><creator>Kenyon, Cynthia</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160517</creationdate><title>Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans</title><author>Wei, Yuehua ; Kenyon, Cynthia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-ed4fb40ac790e6b8a5d156cfbefd7c4e4d2936a763d481b362e525dc39e4efb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Aging</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cytoskeleton</topic><topic>Cytotoxicity</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Germ Cells - physiology</topic><topic>Hydrogen Sulfide - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Longevity</topic><topic>Mitochondria</topic><topic>Mitochondrial Dynamics</topic><topic>Organelle Biogenesis</topic><topic>Oxidation-Reduction</topic><topic>PNAS Plus</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Signal Transduction</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yuehua</creatorcontrib><creatorcontrib>Kenyon, Cynthia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yuehua</au><au>Kenyon, Cynthia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-05-17</date><risdate>2016</risdate><volume>113</volume><issue>20</issue><spage>E2832</spage><epage>E2841</epage><pages>E2832-E2841</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H₂S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H₂S and ROS. These kri-1–dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H₂S and, remarkably, kri-1–dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1–dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27140632</pmid><doi>10.1073/pnas.1524727113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-05, Vol.113 (20), p.E2832-E2841
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4878494
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Active Transport, Cell Nucleus
Aging
Animals
Bacteria
Biological Sciences
Caenorhabditis elegans
Caenorhabditis elegans - cytology
Caenorhabditis elegans - physiology
Caenorhabditis elegans Proteins - metabolism
Cytoskeleton
Cytotoxicity
DNA-Binding Proteins - metabolism
Germ Cells - physiology
Hydrogen Sulfide - metabolism
Intracellular Signaling Peptides and Proteins - metabolism
Longevity
Mitochondria
Mitochondrial Dynamics
Organelle Biogenesis
Oxidation-Reduction
PNAS Plus
Reactive Oxygen Species - metabolism
Signal Transduction
Transcription Factors - metabolism
title Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roles%20for%20ROS%20and%20hydrogen%20sulfide%20in%20the%20longevity%20response%20to%20germline%20loss%20in%20Caenorhabditis%20elegans&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wei,%20Yuehua&rft.date=2016-05-17&rft.volume=113&rft.issue=20&rft.spage=E2832&rft.epage=E2841&rft.pages=E2832-E2841&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1524727113&rft_dat=%3Cjstor_pubme%3E26469935%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793611047&rft_id=info:pmid/27140632&rft_jstor_id=26469935&rfr_iscdi=true