Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans
In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-05, Vol.113 (20), p.E2832-E2841 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E2841 |
---|---|
container_issue | 20 |
container_start_page | E2832 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Wei, Yuehua Kenyon, Cynthia |
description | In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H₂S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H₂S and ROS. These kri-1–dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H₂S and, remarkably, kri-1–dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1–dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity. |
doi_str_mv | 10.1073/pnas.1524727113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4878494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26469935</jstor_id><sourcerecordid>26469935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-ed4fb40ac790e6b8a5d156cfbefd7c4e4d2936a763d481b362e525dc39e4efb93</originalsourceid><addsrcrecordid>eNqF0ctr3DAQB2BRGppt2nNPLYJeenGil_W4FMLSFwQCSXoWsjX2avFKW8kO7H9fm02TtpecdJhvBs38EHpHyTklil_soyvntGZCMUUpf4FWlBhaSWHIS7QihKlKCyZO0etStoQQU2vyCp3OWBDJ2Qr1N2mAgruU8c31LXbR483B59RDxGUauuABh4jHDeAhxR7uw3jAGco-xQJ4TLiHvBtCXMqlLHTtIKa8cY0PYygYBuhdLG_QSeeGAm8f3jP08-uXu_X36ur624_15VXVCiXHCrzoGkFcqwwB2WhXe1rLtmug86oVIDwzXDoluReaNlwyqFntW25AQNcYfoY-H-fup2YHvoU4ZjfYfQ47lw82uWD_rcSwsX26t0IrLYyYB3x6GJDTrwnKaHehtDAMLkKaiqWaaKkN0fp5Oi9BGCesnunH_-g2TTnOl1gUl5QSoWZ1cVRtno-ZoXv8NyV2ydsuedunvOeOD3-v--j_BDyD90ewLWPKT3UppDG85r8BzuuyHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793611047</pqid></control><display><type>article</type><title>Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Wei, Yuehua ; Kenyon, Cynthia</creator><creatorcontrib>Wei, Yuehua ; Kenyon, Cynthia</creatorcontrib><description>In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H₂S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H₂S and ROS. These kri-1–dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H₂S and, remarkably, kri-1–dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1–dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1524727113</identifier><identifier>PMID: 27140632</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active Transport, Cell Nucleus ; Aging ; Animals ; Bacteria ; Biological Sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - cytology ; Caenorhabditis elegans - physiology ; Caenorhabditis elegans Proteins - metabolism ; Cytoskeleton ; Cytotoxicity ; DNA-Binding Proteins - metabolism ; Germ Cells - physiology ; Hydrogen Sulfide - metabolism ; Intracellular Signaling Peptides and Proteins - metabolism ; Longevity ; Mitochondria ; Mitochondrial Dynamics ; Organelle Biogenesis ; Oxidation-Reduction ; PNAS Plus ; Reactive Oxygen Species - metabolism ; Signal Transduction ; Transcription Factors - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-05, Vol.113 (20), p.E2832-E2841</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences May 17, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-ed4fb40ac790e6b8a5d156cfbefd7c4e4d2936a763d481b362e525dc39e4efb93</citedby><cites>FETCH-LOGICAL-c476t-ed4fb40ac790e6b8a5d156cfbefd7c4e4d2936a763d481b362e525dc39e4efb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26469935$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26469935$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27140632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Yuehua</creatorcontrib><creatorcontrib>Kenyon, Cynthia</creatorcontrib><title>Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H₂S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H₂S and ROS. These kri-1–dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H₂S and, remarkably, kri-1–dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1–dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity.</description><subject>Active Transport, Cell Nucleus</subject><subject>Aging</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cytoskeleton</subject><subject>Cytotoxicity</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Germ Cells - physiology</subject><subject>Hydrogen Sulfide - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Longevity</subject><subject>Mitochondria</subject><subject>Mitochondrial Dynamics</subject><subject>Organelle Biogenesis</subject><subject>Oxidation-Reduction</subject><subject>PNAS Plus</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Signal Transduction</subject><subject>Transcription Factors - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctr3DAQB2BRGppt2nNPLYJeenGil_W4FMLSFwQCSXoWsjX2avFKW8kO7H9fm02TtpecdJhvBs38EHpHyTklil_soyvntGZCMUUpf4FWlBhaSWHIS7QihKlKCyZO0etStoQQU2vyCp3OWBDJ2Qr1N2mAgruU8c31LXbR483B59RDxGUauuABh4jHDeAhxR7uw3jAGco-xQJ4TLiHvBtCXMqlLHTtIKa8cY0PYygYBuhdLG_QSeeGAm8f3jP08-uXu_X36ur624_15VXVCiXHCrzoGkFcqwwB2WhXe1rLtmug86oVIDwzXDoluReaNlwyqFntW25AQNcYfoY-H-fup2YHvoU4ZjfYfQ47lw82uWD_rcSwsX26t0IrLYyYB3x6GJDTrwnKaHehtDAMLkKaiqWaaKkN0fp5Oi9BGCesnunH_-g2TTnOl1gUl5QSoWZ1cVRtno-ZoXv8NyV2ydsuedunvOeOD3-v--j_BDyD90ewLWPKT3UppDG85r8BzuuyHg</recordid><startdate>20160517</startdate><enddate>20160517</enddate><creator>Wei, Yuehua</creator><creator>Kenyon, Cynthia</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160517</creationdate><title>Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans</title><author>Wei, Yuehua ; Kenyon, Cynthia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-ed4fb40ac790e6b8a5d156cfbefd7c4e4d2936a763d481b362e525dc39e4efb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Aging</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cytoskeleton</topic><topic>Cytotoxicity</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Germ Cells - physiology</topic><topic>Hydrogen Sulfide - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Longevity</topic><topic>Mitochondria</topic><topic>Mitochondrial Dynamics</topic><topic>Organelle Biogenesis</topic><topic>Oxidation-Reduction</topic><topic>PNAS Plus</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Signal Transduction</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yuehua</creatorcontrib><creatorcontrib>Kenyon, Cynthia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yuehua</au><au>Kenyon, Cynthia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-05-17</date><risdate>2016</risdate><volume>113</volume><issue>20</issue><spage>E2832</spage><epage>E2841</epage><pages>E2832-E2841</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H₂S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H₂S and ROS. These kri-1–dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H₂S and, remarkably, kri-1–dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1–dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27140632</pmid><doi>10.1073/pnas.1524727113</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-05, Vol.113 (20), p.E2832-E2841 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4878494 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Active Transport, Cell Nucleus Aging Animals Bacteria Biological Sciences Caenorhabditis elegans Caenorhabditis elegans - cytology Caenorhabditis elegans - physiology Caenorhabditis elegans Proteins - metabolism Cytoskeleton Cytotoxicity DNA-Binding Proteins - metabolism Germ Cells - physiology Hydrogen Sulfide - metabolism Intracellular Signaling Peptides and Proteins - metabolism Longevity Mitochondria Mitochondrial Dynamics Organelle Biogenesis Oxidation-Reduction PNAS Plus Reactive Oxygen Species - metabolism Signal Transduction Transcription Factors - metabolism |
title | Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roles%20for%20ROS%20and%20hydrogen%20sulfide%20in%20the%20longevity%20response%20to%20germline%20loss%20in%20Caenorhabditis%20elegans&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wei,%20Yuehua&rft.date=2016-05-17&rft.volume=113&rft.issue=20&rft.spage=E2832&rft.epage=E2841&rft.pages=E2832-E2841&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1524727113&rft_dat=%3Cjstor_pubme%3E26469935%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793611047&rft_id=info:pmid/27140632&rft_jstor_id=26469935&rfr_iscdi=true |