High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode
We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generate...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-05, Vol.6 (1), p.26503-26503, Article 26503 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26503 |
---|---|
container_issue | 1 |
container_start_page | 26503 |
container_title | Scientific reports |
container_volume | 6 |
creator | Kim, Sang Moon Ahn, Chi-Yeong Cho, Yong-Hun Kim, Sungjun Hwang, Wonchan Jang, Segeun Shin, Sungsoo Lee, Gunhee Sung, Yung-Eun Choi, Mansoo |
description | We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance. |
doi_str_mv | 10.1038/srep26503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4876450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790922617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-dc559000363bad41a833d787702edefb9644ee8fa33557276ab6c5cab78d68a03</originalsourceid><addsrcrecordid>eNplkUtv1DAUhS1ERavSBX8AWWJDKwX8iB9hgYSiTotU1AWwthznZiZtEgfbKeq_x6Mpo4Heja91Px2f64PQG0o-UML1xxhgZlIQ_gKdMFKKgnHGXh70x-gsxjuSS7CqpNUrdMwUo0RV_ATdX_frTTFD6HwY7eQArxYYcA3DgH_3aYO_pwDJbaDFtU12eIypqL1N-f4NxibYCT7h2wmKmGDGq61I6v2EfYfrYN195i4HcCn4Fl6jo84OEc6ezlP0c3X5o74ubm6vvtZfbgpXcp2K1glRZbdc8sa2JbWa81ZppQiDFrqmkmUJoDvLuRCKKWkb6YSzjdKt1JbwU_R5pzsvzQitgykFO5g59KMNj8bb3vw7mfqNWfsHU2olS7EVeP8kEPyvBWIyYx9d_pK8rV-ioaoiFWOSqoy--w-980uY8nqG6kpLJXTFM3W-o1zwMQfW7c1QYrYpmn2KmX176H5P_s0sAxc7IObRtIZw8OQztT-G5qbe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898675893</pqid></control><display><type>article</type><title>High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Sang Moon ; Ahn, Chi-Yeong ; Cho, Yong-Hun ; Kim, Sungjun ; Hwang, Wonchan ; Jang, Segeun ; Shin, Sungsoo ; Lee, Gunhee ; Sung, Yung-Eun ; Choi, Mansoo</creator><creatorcontrib>Kim, Sang Moon ; Ahn, Chi-Yeong ; Cho, Yong-Hun ; Kim, Sungjun ; Hwang, Wonchan ; Jang, Segeun ; Shin, Sungsoo ; Lee, Gunhee ; Sung, Yung-Eun ; Choi, Mansoo</creatorcontrib><description>We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep26503</identifier><identifier>PMID: 27210793</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/893 ; 639/4077/893 ; Electrodes ; Electrolytes ; Fuel cells ; Fuel technology ; Humanities and Social Sciences ; Mass transport ; Membrane resistance ; Membranes ; multidisciplinary ; Plastics ; Polymers ; Science ; Science (multidisciplinary) ; Strain</subject><ispartof>Scientific reports, 2016-05, Vol.6 (1), p.26503-26503, Article 26503</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group May 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-dc559000363bad41a833d787702edefb9644ee8fa33557276ab6c5cab78d68a03</citedby><cites>FETCH-LOGICAL-c438t-dc559000363bad41a833d787702edefb9644ee8fa33557276ab6c5cab78d68a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876450/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876450/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27210793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sang Moon</creatorcontrib><creatorcontrib>Ahn, Chi-Yeong</creatorcontrib><creatorcontrib>Cho, Yong-Hun</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><creatorcontrib>Hwang, Wonchan</creatorcontrib><creatorcontrib>Jang, Segeun</creatorcontrib><creatorcontrib>Shin, Sungsoo</creatorcontrib><creatorcontrib>Lee, Gunhee</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Choi, Mansoo</creatorcontrib><title>High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.</description><subject>639/301/299/893</subject><subject>639/4077/893</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Humanities and Social Sciences</subject><subject>Mass transport</subject><subject>Membrane resistance</subject><subject>Membranes</subject><subject>multidisciplinary</subject><subject>Plastics</subject><subject>Polymers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Strain</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUtv1DAUhS1ERavSBX8AWWJDKwX8iB9hgYSiTotU1AWwthznZiZtEgfbKeq_x6Mpo4Heja91Px2f64PQG0o-UML1xxhgZlIQ_gKdMFKKgnHGXh70x-gsxjuSS7CqpNUrdMwUo0RV_ATdX_frTTFD6HwY7eQArxYYcA3DgH_3aYO_pwDJbaDFtU12eIypqL1N-f4NxibYCT7h2wmKmGDGq61I6v2EfYfrYN195i4HcCn4Fl6jo84OEc6ezlP0c3X5o74ubm6vvtZfbgpXcp2K1glRZbdc8sa2JbWa81ZppQiDFrqmkmUJoDvLuRCKKWkb6YSzjdKt1JbwU_R5pzsvzQitgykFO5g59KMNj8bb3vw7mfqNWfsHU2olS7EVeP8kEPyvBWIyYx9d_pK8rV-ioaoiFWOSqoy--w-980uY8nqG6kpLJXTFM3W-o1zwMQfW7c1QYrYpmn2KmX176H5P_s0sAxc7IObRtIZw8OQztT-G5qbe</recordid><startdate>20160523</startdate><enddate>20160523</enddate><creator>Kim, Sang Moon</creator><creator>Ahn, Chi-Yeong</creator><creator>Cho, Yong-Hun</creator><creator>Kim, Sungjun</creator><creator>Hwang, Wonchan</creator><creator>Jang, Segeun</creator><creator>Shin, Sungsoo</creator><creator>Lee, Gunhee</creator><creator>Sung, Yung-Eun</creator><creator>Choi, Mansoo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160523</creationdate><title>High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode</title><author>Kim, Sang Moon ; Ahn, Chi-Yeong ; Cho, Yong-Hun ; Kim, Sungjun ; Hwang, Wonchan ; Jang, Segeun ; Shin, Sungsoo ; Lee, Gunhee ; Sung, Yung-Eun ; Choi, Mansoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-dc559000363bad41a833d787702edefb9644ee8fa33557276ab6c5cab78d68a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/299/893</topic><topic>639/4077/893</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Humanities and Social Sciences</topic><topic>Mass transport</topic><topic>Membrane resistance</topic><topic>Membranes</topic><topic>multidisciplinary</topic><topic>Plastics</topic><topic>Polymers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sang Moon</creatorcontrib><creatorcontrib>Ahn, Chi-Yeong</creatorcontrib><creatorcontrib>Cho, Yong-Hun</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><creatorcontrib>Hwang, Wonchan</creatorcontrib><creatorcontrib>Jang, Segeun</creatorcontrib><creatorcontrib>Shin, Sungsoo</creatorcontrib><creatorcontrib>Lee, Gunhee</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Choi, Mansoo</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sang Moon</au><au>Ahn, Chi-Yeong</au><au>Cho, Yong-Hun</au><au>Kim, Sungjun</au><au>Hwang, Wonchan</au><au>Jang, Segeun</au><au>Shin, Sungsoo</au><au>Lee, Gunhee</au><au>Sung, Yung-Eun</au><au>Choi, Mansoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-05-23</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>26503</spage><epage>26503</epage><pages>26503-26503</pages><artnum>26503</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27210793</pmid><doi>10.1038/srep26503</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-05, Vol.6 (1), p.26503-26503, Article 26503 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4876450 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 639/301/299/893 639/4077/893 Electrodes Electrolytes Fuel cells Fuel technology Humanities and Social Sciences Mass transport Membrane resistance Membranes multidisciplinary Plastics Polymers Science Science (multidisciplinary) Strain |
title | High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20Fuel%20Cell%20with%20Stretched%20Catalyst-Coated%20Membrane:%20One-step%20Formation%20of%20Cracked%20Electrode&rft.jtitle=Scientific%20reports&rft.au=Kim,%20Sang%20Moon&rft.date=2016-05-23&rft.volume=6&rft.issue=1&rft.spage=26503&rft.epage=26503&rft.pages=26503-26503&rft.artnum=26503&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep26503&rft_dat=%3Cproquest_pubme%3E1790922617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898675893&rft_id=info:pmid/27210793&rfr_iscdi=true |