High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode

We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-05, Vol.6 (1), p.26503-26503, Article 26503
Hauptverfasser: Kim, Sang Moon, Ahn, Chi-Yeong, Cho, Yong-Hun, Kim, Sungjun, Hwang, Wonchan, Jang, Segeun, Shin, Sungsoo, Lee, Gunhee, Sung, Yung-Eun, Choi, Mansoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26503
container_issue 1
container_start_page 26503
container_title Scientific reports
container_volume 6
creator Kim, Sang Moon
Ahn, Chi-Yeong
Cho, Yong-Hun
Kim, Sungjun
Hwang, Wonchan
Jang, Segeun
Shin, Sungsoo
Lee, Gunhee
Sung, Yung-Eun
Choi, Mansoo
description We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.
doi_str_mv 10.1038/srep26503
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4876450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790922617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-dc559000363bad41a833d787702edefb9644ee8fa33557276ab6c5cab78d68a03</originalsourceid><addsrcrecordid>eNplkUtv1DAUhS1ERavSBX8AWWJDKwX8iB9hgYSiTotU1AWwthznZiZtEgfbKeq_x6Mpo4Heja91Px2f64PQG0o-UML1xxhgZlIQ_gKdMFKKgnHGXh70x-gsxjuSS7CqpNUrdMwUo0RV_ATdX_frTTFD6HwY7eQArxYYcA3DgH_3aYO_pwDJbaDFtU12eIypqL1N-f4NxibYCT7h2wmKmGDGq61I6v2EfYfrYN195i4HcCn4Fl6jo84OEc6ezlP0c3X5o74ubm6vvtZfbgpXcp2K1glRZbdc8sa2JbWa81ZppQiDFrqmkmUJoDvLuRCKKWkb6YSzjdKt1JbwU_R5pzsvzQitgykFO5g59KMNj8bb3vw7mfqNWfsHU2olS7EVeP8kEPyvBWIyYx9d_pK8rV-ioaoiFWOSqoy--w-980uY8nqG6kpLJXTFM3W-o1zwMQfW7c1QYrYpmn2KmX176H5P_s0sAxc7IObRtIZw8OQztT-G5qbe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898675893</pqid></control><display><type>article</type><title>High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Sang Moon ; Ahn, Chi-Yeong ; Cho, Yong-Hun ; Kim, Sungjun ; Hwang, Wonchan ; Jang, Segeun ; Shin, Sungsoo ; Lee, Gunhee ; Sung, Yung-Eun ; Choi, Mansoo</creator><creatorcontrib>Kim, Sang Moon ; Ahn, Chi-Yeong ; Cho, Yong-Hun ; Kim, Sungjun ; Hwang, Wonchan ; Jang, Segeun ; Shin, Sungsoo ; Lee, Gunhee ; Sung, Yung-Eun ; Choi, Mansoo</creatorcontrib><description>We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep26503</identifier><identifier>PMID: 27210793</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/893 ; 639/4077/893 ; Electrodes ; Electrolytes ; Fuel cells ; Fuel technology ; Humanities and Social Sciences ; Mass transport ; Membrane resistance ; Membranes ; multidisciplinary ; Plastics ; Polymers ; Science ; Science (multidisciplinary) ; Strain</subject><ispartof>Scientific reports, 2016-05, Vol.6 (1), p.26503-26503, Article 26503</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group May 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-dc559000363bad41a833d787702edefb9644ee8fa33557276ab6c5cab78d68a03</citedby><cites>FETCH-LOGICAL-c438t-dc559000363bad41a833d787702edefb9644ee8fa33557276ab6c5cab78d68a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876450/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876450/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27210793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sang Moon</creatorcontrib><creatorcontrib>Ahn, Chi-Yeong</creatorcontrib><creatorcontrib>Cho, Yong-Hun</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><creatorcontrib>Hwang, Wonchan</creatorcontrib><creatorcontrib>Jang, Segeun</creatorcontrib><creatorcontrib>Shin, Sungsoo</creatorcontrib><creatorcontrib>Lee, Gunhee</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Choi, Mansoo</creatorcontrib><title>High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.</description><subject>639/301/299/893</subject><subject>639/4077/893</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Humanities and Social Sciences</subject><subject>Mass transport</subject><subject>Membrane resistance</subject><subject>Membranes</subject><subject>multidisciplinary</subject><subject>Plastics</subject><subject>Polymers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Strain</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUtv1DAUhS1ERavSBX8AWWJDKwX8iB9hgYSiTotU1AWwthznZiZtEgfbKeq_x6Mpo4Heja91Px2f64PQG0o-UML1xxhgZlIQ_gKdMFKKgnHGXh70x-gsxjuSS7CqpNUrdMwUo0RV_ATdX_frTTFD6HwY7eQArxYYcA3DgH_3aYO_pwDJbaDFtU12eIypqL1N-f4NxibYCT7h2wmKmGDGq61I6v2EfYfrYN195i4HcCn4Fl6jo84OEc6ezlP0c3X5o74ubm6vvtZfbgpXcp2K1glRZbdc8sa2JbWa81ZppQiDFrqmkmUJoDvLuRCKKWkb6YSzjdKt1JbwU_R5pzsvzQitgykFO5g59KMNj8bb3vw7mfqNWfsHU2olS7EVeP8kEPyvBWIyYx9d_pK8rV-ioaoiFWOSqoy--w-980uY8nqG6kpLJXTFM3W-o1zwMQfW7c1QYrYpmn2KmX176H5P_s0sAxc7IObRtIZw8OQztT-G5qbe</recordid><startdate>20160523</startdate><enddate>20160523</enddate><creator>Kim, Sang Moon</creator><creator>Ahn, Chi-Yeong</creator><creator>Cho, Yong-Hun</creator><creator>Kim, Sungjun</creator><creator>Hwang, Wonchan</creator><creator>Jang, Segeun</creator><creator>Shin, Sungsoo</creator><creator>Lee, Gunhee</creator><creator>Sung, Yung-Eun</creator><creator>Choi, Mansoo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160523</creationdate><title>High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode</title><author>Kim, Sang Moon ; Ahn, Chi-Yeong ; Cho, Yong-Hun ; Kim, Sungjun ; Hwang, Wonchan ; Jang, Segeun ; Shin, Sungsoo ; Lee, Gunhee ; Sung, Yung-Eun ; Choi, Mansoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-dc559000363bad41a833d787702edefb9644ee8fa33557276ab6c5cab78d68a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/299/893</topic><topic>639/4077/893</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Humanities and Social Sciences</topic><topic>Mass transport</topic><topic>Membrane resistance</topic><topic>Membranes</topic><topic>multidisciplinary</topic><topic>Plastics</topic><topic>Polymers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sang Moon</creatorcontrib><creatorcontrib>Ahn, Chi-Yeong</creatorcontrib><creatorcontrib>Cho, Yong-Hun</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><creatorcontrib>Hwang, Wonchan</creatorcontrib><creatorcontrib>Jang, Segeun</creatorcontrib><creatorcontrib>Shin, Sungsoo</creatorcontrib><creatorcontrib>Lee, Gunhee</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Choi, Mansoo</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sang Moon</au><au>Ahn, Chi-Yeong</au><au>Cho, Yong-Hun</au><au>Kim, Sungjun</au><au>Hwang, Wonchan</au><au>Jang, Segeun</au><au>Shin, Sungsoo</au><au>Lee, Gunhee</au><au>Sung, Yung-Eun</au><au>Choi, Mansoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-05-23</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>26503</spage><epage>26503</epage><pages>26503-26503</pages><artnum>26503</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27210793</pmid><doi>10.1038/srep26503</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-05, Vol.6 (1), p.26503-26503, Article 26503
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4876450
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 639/301/299/893
639/4077/893
Electrodes
Electrolytes
Fuel cells
Fuel technology
Humanities and Social Sciences
Mass transport
Membrane resistance
Membranes
multidisciplinary
Plastics
Polymers
Science
Science (multidisciplinary)
Strain
title High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20Fuel%20Cell%20with%20Stretched%20Catalyst-Coated%20Membrane:%20One-step%20Formation%20of%20Cracked%20Electrode&rft.jtitle=Scientific%20reports&rft.au=Kim,%20Sang%20Moon&rft.date=2016-05-23&rft.volume=6&rft.issue=1&rft.spage=26503&rft.epage=26503&rft.pages=26503-26503&rft.artnum=26503&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep26503&rft_dat=%3Cproquest_pubme%3E1790922617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898675893&rft_id=info:pmid/27210793&rfr_iscdi=true