FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development
In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a tran...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2016-06, Vol.414 (1), p.34-44 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1 |
container_start_page | 34 |
container_title | Developmental biology |
container_volume | 414 |
creator | Reid, Christine D. Steiner, Aaron B. Yaklichkin, Sergey Lu, Qun Wang, Shouwen Hennessy, Morgan Kessler, Daniel S. |
description | In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation.
•FoxH1 binds to Grg4 via a conserved EH1 motif.•Grg4 blocks Nodal target gene expression.•FoxH1, Grg4 and Smad2/3 occupy the Xnr1 enhancer.•Grg4 is displaced from the Xnr1 enhancer in response to Nodal signals. |
doi_str_mv | 10.1016/j.ydbio.2016.04.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4875808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160616300239</els_id><sourcerecordid>1836631544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-47c99860743fc18185f0f6416e448d0af3ad7f75a231b1aabbb0f310464ba5d33</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhFyAhH7lkO44_4hxAQlW_pAoOgNSb5djO1qvEDnaypf8eL1squACn0djvPDNjvwi9JrAmQMTJdn1vOx_XdUnWwNYA4glaEWh5xQW7eYpWAKSuiABxhF7kvAUAKiV9jo7qBiRvOF2hu_P4_ZLg0VmvZ5exxhdpw7AOFn8eta2xdZML1oUZz0mHbJKfZh-DHnC-87O5xT7gj9Huc78pxz5ssF3SPty4EKclF3iO1qWxsHZuiNNYaC_Rs14P2b16iMfo6_nZl9PL6vrTxdXph-vK8JrPFWtM20oBDaO9IZJI3kMvGBGOMWlB91Tbpm-4rinpiNZd10FPCTDBOs0tpcfo_YE7LV1Z0pTWSQ9qSn7U6V5F7dWfN8Hfqk3cKSYbLkEWwNsHQIrfFpdnNfps3DDo4OKSFZFUCEo4Y_8hBSlI3bbNv6VNC4IULhQpPUhNijkn1z8OT0DtjaC26qcR1N4ICpgqRihVb37f-7Hm188XwbuDwJXX33mXVDbeBVOMkJyZlY3-rw1-ANSPxuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790616310</pqid></control><display><type>article</type><title>FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Reid, Christine D. ; Steiner, Aaron B. ; Yaklichkin, Sergey ; Lu, Qun ; Wang, Shouwen ; Hennessy, Morgan ; Kessler, Daniel S.</creator><creatorcontrib>Reid, Christine D. ; Steiner, Aaron B. ; Yaklichkin, Sergey ; Lu, Qun ; Wang, Shouwen ; Hennessy, Morgan ; Kessler, Daniel S.</creatorcontrib><description>In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation.
•FoxH1 binds to Grg4 via a conserved EH1 motif.•Grg4 blocks Nodal target gene expression.•FoxH1, Grg4 and Smad2/3 occupy the Xnr1 enhancer.•Grg4 is displaced from the Xnr1 enhancer in response to Nodal signals.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2016.04.006</identifier><identifier>PMID: 27085753</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Motifs ; Animals ; autoregulation ; Blastula - metabolism ; Co-Repressor Proteins - physiology ; Enhancer Elements, Genetic - genetics ; Forkhead Transcription Factors - physiology ; FoxH1 ; Gastrula - metabolism ; gene expression ; Gene Expression Regulation, Developmental - genetics ; Gene Expression Regulation, Developmental - physiology ; genes ; Grg4 ; Groucho ; Mesoderm ; Mesoderm - growth & development ; Microinjections ; mutants ; Nodal ; Nodal Signaling Ligands - physiology ; Protein Binding ; Protein Interaction Mapping ; RNA, Messenger - genetics ; Smad2 ; Smad2 Protein - physiology ; transcription (genetics) ; Transcription, Genetic - genetics ; vertebrates ; Xenopus ; Xenopus laevis - embryology ; Xenopus laevis - genetics ; Xenopus Proteins - biosynthesis ; Xenopus Proteins - genetics ; Xenopus Proteins - physiology</subject><ispartof>Developmental biology, 2016-06, Vol.414 (1), p.34-44</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-47c99860743fc18185f0f6416e448d0af3ad7f75a231b1aabbb0f310464ba5d33</citedby><cites>FETCH-LOGICAL-c525t-47c99860743fc18185f0f6416e448d0af3ad7f75a231b1aabbb0f310464ba5d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012160616300239$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27085753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reid, Christine D.</creatorcontrib><creatorcontrib>Steiner, Aaron B.</creatorcontrib><creatorcontrib>Yaklichkin, Sergey</creatorcontrib><creatorcontrib>Lu, Qun</creatorcontrib><creatorcontrib>Wang, Shouwen</creatorcontrib><creatorcontrib>Hennessy, Morgan</creatorcontrib><creatorcontrib>Kessler, Daniel S.</creatorcontrib><title>FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation.
•FoxH1 binds to Grg4 via a conserved EH1 motif.•Grg4 blocks Nodal target gene expression.•FoxH1, Grg4 and Smad2/3 occupy the Xnr1 enhancer.•Grg4 is displaced from the Xnr1 enhancer in response to Nodal signals.</description><subject>Amino Acid Motifs</subject><subject>Animals</subject><subject>autoregulation</subject><subject>Blastula - metabolism</subject><subject>Co-Repressor Proteins - physiology</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Forkhead Transcription Factors - physiology</subject><subject>FoxH1</subject><subject>Gastrula - metabolism</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>genes</subject><subject>Grg4</subject><subject>Groucho</subject><subject>Mesoderm</subject><subject>Mesoderm - growth & development</subject><subject>Microinjections</subject><subject>mutants</subject><subject>Nodal</subject><subject>Nodal Signaling Ligands - physiology</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>RNA, Messenger - genetics</subject><subject>Smad2</subject><subject>Smad2 Protein - physiology</subject><subject>transcription (genetics)</subject><subject>Transcription, Genetic - genetics</subject><subject>vertebrates</subject><subject>Xenopus</subject><subject>Xenopus laevis - embryology</subject><subject>Xenopus laevis - genetics</subject><subject>Xenopus Proteins - biosynthesis</subject><subject>Xenopus Proteins - genetics</subject><subject>Xenopus Proteins - physiology</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EokvhFyAhH7lkO44_4hxAQlW_pAoOgNSb5djO1qvEDnaypf8eL1squACn0djvPDNjvwi9JrAmQMTJdn1vOx_XdUnWwNYA4glaEWh5xQW7eYpWAKSuiABxhF7kvAUAKiV9jo7qBiRvOF2hu_P4_ZLg0VmvZ5exxhdpw7AOFn8eta2xdZML1oUZz0mHbJKfZh-DHnC-87O5xT7gj9Huc78pxz5ssF3SPty4EKclF3iO1qWxsHZuiNNYaC_Rs14P2b16iMfo6_nZl9PL6vrTxdXph-vK8JrPFWtM20oBDaO9IZJI3kMvGBGOMWlB91Tbpm-4rinpiNZd10FPCTDBOs0tpcfo_YE7LV1Z0pTWSQ9qSn7U6V5F7dWfN8Hfqk3cKSYbLkEWwNsHQIrfFpdnNfps3DDo4OKSFZFUCEo4Y_8hBSlI3bbNv6VNC4IULhQpPUhNijkn1z8OT0DtjaC26qcR1N4ICpgqRihVb37f-7Hm188XwbuDwJXX33mXVDbeBVOMkJyZlY3-rw1-ANSPxuQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Reid, Christine D.</creator><creator>Steiner, Aaron B.</creator><creator>Yaklichkin, Sergey</creator><creator>Lu, Qun</creator><creator>Wang, Shouwen</creator><creator>Hennessy, Morgan</creator><creator>Kessler, Daniel S.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160601</creationdate><title>FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development</title><author>Reid, Christine D. ; Steiner, Aaron B. ; Yaklichkin, Sergey ; Lu, Qun ; Wang, Shouwen ; Hennessy, Morgan ; Kessler, Daniel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-47c99860743fc18185f0f6416e448d0af3ad7f75a231b1aabbb0f310464ba5d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Motifs</topic><topic>Animals</topic><topic>autoregulation</topic><topic>Blastula - metabolism</topic><topic>Co-Repressor Proteins - physiology</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Forkhead Transcription Factors - physiology</topic><topic>FoxH1</topic><topic>Gastrula - metabolism</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>genes</topic><topic>Grg4</topic><topic>Groucho</topic><topic>Mesoderm</topic><topic>Mesoderm - growth & development</topic><topic>Microinjections</topic><topic>mutants</topic><topic>Nodal</topic><topic>Nodal Signaling Ligands - physiology</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>RNA, Messenger - genetics</topic><topic>Smad2</topic><topic>Smad2 Protein - physiology</topic><topic>transcription (genetics)</topic><topic>Transcription, Genetic - genetics</topic><topic>vertebrates</topic><topic>Xenopus</topic><topic>Xenopus laevis - embryology</topic><topic>Xenopus laevis - genetics</topic><topic>Xenopus Proteins - biosynthesis</topic><topic>Xenopus Proteins - genetics</topic><topic>Xenopus Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reid, Christine D.</creatorcontrib><creatorcontrib>Steiner, Aaron B.</creatorcontrib><creatorcontrib>Yaklichkin, Sergey</creatorcontrib><creatorcontrib>Lu, Qun</creatorcontrib><creatorcontrib>Wang, Shouwen</creatorcontrib><creatorcontrib>Hennessy, Morgan</creatorcontrib><creatorcontrib>Kessler, Daniel S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reid, Christine D.</au><au>Steiner, Aaron B.</au><au>Yaklichkin, Sergey</au><au>Lu, Qun</au><au>Wang, Shouwen</au><au>Hennessy, Morgan</au><au>Kessler, Daniel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>414</volume><issue>1</issue><spage>34</spage><epage>44</epage><pages>34-44</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation.
•FoxH1 binds to Grg4 via a conserved EH1 motif.•Grg4 blocks Nodal target gene expression.•FoxH1, Grg4 and Smad2/3 occupy the Xnr1 enhancer.•Grg4 is displaced from the Xnr1 enhancer in response to Nodal signals.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27085753</pmid><doi>10.1016/j.ydbio.2016.04.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1606 |
ispartof | Developmental biology, 2016-06, Vol.414 (1), p.34-44 |
issn | 0012-1606 1095-564X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4875808 |
source | MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amino Acid Motifs Animals autoregulation Blastula - metabolism Co-Repressor Proteins - physiology Enhancer Elements, Genetic - genetics Forkhead Transcription Factors - physiology FoxH1 Gastrula - metabolism gene expression Gene Expression Regulation, Developmental - genetics Gene Expression Regulation, Developmental - physiology genes Grg4 Groucho Mesoderm Mesoderm - growth & development Microinjections mutants Nodal Nodal Signaling Ligands - physiology Protein Binding Protein Interaction Mapping RNA, Messenger - genetics Smad2 Smad2 Protein - physiology transcription (genetics) Transcription, Genetic - genetics vertebrates Xenopus Xenopus laevis - embryology Xenopus laevis - genetics Xenopus Proteins - biosynthesis Xenopus Proteins - genetics Xenopus Proteins - physiology |
title | FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FoxH1%20mediates%20a%20Grg4%20and%20Smad2%20dependent%20transcriptional%20switch%20in%20Nodal%20signaling%20during%20Xenopus%20mesoderm%20development&rft.jtitle=Developmental%20biology&rft.au=Reid,%20Christine%20D.&rft.date=2016-06-01&rft.volume=414&rft.issue=1&rft.spage=34&rft.epage=44&rft.pages=34-44&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2016.04.006&rft_dat=%3Cproquest_pubme%3E1836631544%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790616310&rft_id=info:pmid/27085753&rft_els_id=S0012160616300239&rfr_iscdi=true |