FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development

In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 2016-06, Vol.414 (1), p.34-44
Hauptverfasser: Reid, Christine D., Steiner, Aaron B., Yaklichkin, Sergey, Lu, Qun, Wang, Shouwen, Hennessy, Morgan, Kessler, Daniel S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 1
container_start_page 34
container_title Developmental biology
container_volume 414
creator Reid, Christine D.
Steiner, Aaron B.
Yaklichkin, Sergey
Lu, Qun
Wang, Shouwen
Hennessy, Morgan
Kessler, Daniel S.
description In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation. •FoxH1 binds to Grg4 via a conserved EH1 motif.•Grg4 blocks Nodal target gene expression.•FoxH1, Grg4 and Smad2/3 occupy the Xnr1 enhancer.•Grg4 is displaced from the Xnr1 enhancer in response to Nodal signals.
doi_str_mv 10.1016/j.ydbio.2016.04.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4875808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160616300239</els_id><sourcerecordid>1836631544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-47c99860743fc18185f0f6416e448d0af3ad7f75a231b1aabbb0f310464ba5d33</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhFyAhH7lkO44_4hxAQlW_pAoOgNSb5djO1qvEDnaypf8eL1squACn0djvPDNjvwi9JrAmQMTJdn1vOx_XdUnWwNYA4glaEWh5xQW7eYpWAKSuiABxhF7kvAUAKiV9jo7qBiRvOF2hu_P4_ZLg0VmvZ5exxhdpw7AOFn8eta2xdZML1oUZz0mHbJKfZh-DHnC-87O5xT7gj9Huc78pxz5ssF3SPty4EKclF3iO1qWxsHZuiNNYaC_Rs14P2b16iMfo6_nZl9PL6vrTxdXph-vK8JrPFWtM20oBDaO9IZJI3kMvGBGOMWlB91Tbpm-4rinpiNZd10FPCTDBOs0tpcfo_YE7LV1Z0pTWSQ9qSn7U6V5F7dWfN8Hfqk3cKSYbLkEWwNsHQIrfFpdnNfps3DDo4OKSFZFUCEo4Y_8hBSlI3bbNv6VNC4IULhQpPUhNijkn1z8OT0DtjaC26qcR1N4ICpgqRihVb37f-7Hm188XwbuDwJXX33mXVDbeBVOMkJyZlY3-rw1-ANSPxuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790616310</pqid></control><display><type>article</type><title>FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Reid, Christine D. ; Steiner, Aaron B. ; Yaklichkin, Sergey ; Lu, Qun ; Wang, Shouwen ; Hennessy, Morgan ; Kessler, Daniel S.</creator><creatorcontrib>Reid, Christine D. ; Steiner, Aaron B. ; Yaklichkin, Sergey ; Lu, Qun ; Wang, Shouwen ; Hennessy, Morgan ; Kessler, Daniel S.</creatorcontrib><description>In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation. •FoxH1 binds to Grg4 via a conserved EH1 motif.•Grg4 blocks Nodal target gene expression.•FoxH1, Grg4 and Smad2/3 occupy the Xnr1 enhancer.•Grg4 is displaced from the Xnr1 enhancer in response to Nodal signals.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2016.04.006</identifier><identifier>PMID: 27085753</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Motifs ; Animals ; autoregulation ; Blastula - metabolism ; Co-Repressor Proteins - physiology ; Enhancer Elements, Genetic - genetics ; Forkhead Transcription Factors - physiology ; FoxH1 ; Gastrula - metabolism ; gene expression ; Gene Expression Regulation, Developmental - genetics ; Gene Expression Regulation, Developmental - physiology ; genes ; Grg4 ; Groucho ; Mesoderm ; Mesoderm - growth &amp; development ; Microinjections ; mutants ; Nodal ; Nodal Signaling Ligands - physiology ; Protein Binding ; Protein Interaction Mapping ; RNA, Messenger - genetics ; Smad2 ; Smad2 Protein - physiology ; transcription (genetics) ; Transcription, Genetic - genetics ; vertebrates ; Xenopus ; Xenopus laevis - embryology ; Xenopus laevis - genetics ; Xenopus Proteins - biosynthesis ; Xenopus Proteins - genetics ; Xenopus Proteins - physiology</subject><ispartof>Developmental biology, 2016-06, Vol.414 (1), p.34-44</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-47c99860743fc18185f0f6416e448d0af3ad7f75a231b1aabbb0f310464ba5d33</citedby><cites>FETCH-LOGICAL-c525t-47c99860743fc18185f0f6416e448d0af3ad7f75a231b1aabbb0f310464ba5d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012160616300239$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27085753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reid, Christine D.</creatorcontrib><creatorcontrib>Steiner, Aaron B.</creatorcontrib><creatorcontrib>Yaklichkin, Sergey</creatorcontrib><creatorcontrib>Lu, Qun</creatorcontrib><creatorcontrib>Wang, Shouwen</creatorcontrib><creatorcontrib>Hennessy, Morgan</creatorcontrib><creatorcontrib>Kessler, Daniel S.</creatorcontrib><title>FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation. •FoxH1 binds to Grg4 via a conserved EH1 motif.•Grg4 blocks Nodal target gene expression.•FoxH1, Grg4 and Smad2/3 occupy the Xnr1 enhancer.•Grg4 is displaced from the Xnr1 enhancer in response to Nodal signals.</description><subject>Amino Acid Motifs</subject><subject>Animals</subject><subject>autoregulation</subject><subject>Blastula - metabolism</subject><subject>Co-Repressor Proteins - physiology</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Forkhead Transcription Factors - physiology</subject><subject>FoxH1</subject><subject>Gastrula - metabolism</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>genes</subject><subject>Grg4</subject><subject>Groucho</subject><subject>Mesoderm</subject><subject>Mesoderm - growth &amp; development</subject><subject>Microinjections</subject><subject>mutants</subject><subject>Nodal</subject><subject>Nodal Signaling Ligands - physiology</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>RNA, Messenger - genetics</subject><subject>Smad2</subject><subject>Smad2 Protein - physiology</subject><subject>transcription (genetics)</subject><subject>Transcription, Genetic - genetics</subject><subject>vertebrates</subject><subject>Xenopus</subject><subject>Xenopus laevis - embryology</subject><subject>Xenopus laevis - genetics</subject><subject>Xenopus Proteins - biosynthesis</subject><subject>Xenopus Proteins - genetics</subject><subject>Xenopus Proteins - physiology</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EokvhFyAhH7lkO44_4hxAQlW_pAoOgNSb5djO1qvEDnaypf8eL1squACn0djvPDNjvwi9JrAmQMTJdn1vOx_XdUnWwNYA4glaEWh5xQW7eYpWAKSuiABxhF7kvAUAKiV9jo7qBiRvOF2hu_P4_ZLg0VmvZ5exxhdpw7AOFn8eta2xdZML1oUZz0mHbJKfZh-DHnC-87O5xT7gj9Huc78pxz5ssF3SPty4EKclF3iO1qWxsHZuiNNYaC_Rs14P2b16iMfo6_nZl9PL6vrTxdXph-vK8JrPFWtM20oBDaO9IZJI3kMvGBGOMWlB91Tbpm-4rinpiNZd10FPCTDBOs0tpcfo_YE7LV1Z0pTWSQ9qSn7U6V5F7dWfN8Hfqk3cKSYbLkEWwNsHQIrfFpdnNfps3DDo4OKSFZFUCEo4Y_8hBSlI3bbNv6VNC4IULhQpPUhNijkn1z8OT0DtjaC26qcR1N4ICpgqRihVb37f-7Hm188XwbuDwJXX33mXVDbeBVOMkJyZlY3-rw1-ANSPxuQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Reid, Christine D.</creator><creator>Steiner, Aaron B.</creator><creator>Yaklichkin, Sergey</creator><creator>Lu, Qun</creator><creator>Wang, Shouwen</creator><creator>Hennessy, Morgan</creator><creator>Kessler, Daniel S.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160601</creationdate><title>FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development</title><author>Reid, Christine D. ; Steiner, Aaron B. ; Yaklichkin, Sergey ; Lu, Qun ; Wang, Shouwen ; Hennessy, Morgan ; Kessler, Daniel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-47c99860743fc18185f0f6416e448d0af3ad7f75a231b1aabbb0f310464ba5d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Motifs</topic><topic>Animals</topic><topic>autoregulation</topic><topic>Blastula - metabolism</topic><topic>Co-Repressor Proteins - physiology</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Forkhead Transcription Factors - physiology</topic><topic>FoxH1</topic><topic>Gastrula - metabolism</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>genes</topic><topic>Grg4</topic><topic>Groucho</topic><topic>Mesoderm</topic><topic>Mesoderm - growth &amp; development</topic><topic>Microinjections</topic><topic>mutants</topic><topic>Nodal</topic><topic>Nodal Signaling Ligands - physiology</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>RNA, Messenger - genetics</topic><topic>Smad2</topic><topic>Smad2 Protein - physiology</topic><topic>transcription (genetics)</topic><topic>Transcription, Genetic - genetics</topic><topic>vertebrates</topic><topic>Xenopus</topic><topic>Xenopus laevis - embryology</topic><topic>Xenopus laevis - genetics</topic><topic>Xenopus Proteins - biosynthesis</topic><topic>Xenopus Proteins - genetics</topic><topic>Xenopus Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reid, Christine D.</creatorcontrib><creatorcontrib>Steiner, Aaron B.</creatorcontrib><creatorcontrib>Yaklichkin, Sergey</creatorcontrib><creatorcontrib>Lu, Qun</creatorcontrib><creatorcontrib>Wang, Shouwen</creatorcontrib><creatorcontrib>Hennessy, Morgan</creatorcontrib><creatorcontrib>Kessler, Daniel S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reid, Christine D.</au><au>Steiner, Aaron B.</au><au>Yaklichkin, Sergey</au><au>Lu, Qun</au><au>Wang, Shouwen</au><au>Hennessy, Morgan</au><au>Kessler, Daniel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>414</volume><issue>1</issue><spage>34</spage><epage>44</epage><pages>34-44</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation. •FoxH1 binds to Grg4 via a conserved EH1 motif.•Grg4 blocks Nodal target gene expression.•FoxH1, Grg4 and Smad2/3 occupy the Xnr1 enhancer.•Grg4 is displaced from the Xnr1 enhancer in response to Nodal signals.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27085753</pmid><doi>10.1016/j.ydbio.2016.04.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2016-06, Vol.414 (1), p.34-44
issn 0012-1606
1095-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4875808
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amino Acid Motifs
Animals
autoregulation
Blastula - metabolism
Co-Repressor Proteins - physiology
Enhancer Elements, Genetic - genetics
Forkhead Transcription Factors - physiology
FoxH1
Gastrula - metabolism
gene expression
Gene Expression Regulation, Developmental - genetics
Gene Expression Regulation, Developmental - physiology
genes
Grg4
Groucho
Mesoderm
Mesoderm - growth & development
Microinjections
mutants
Nodal
Nodal Signaling Ligands - physiology
Protein Binding
Protein Interaction Mapping
RNA, Messenger - genetics
Smad2
Smad2 Protein - physiology
transcription (genetics)
Transcription, Genetic - genetics
vertebrates
Xenopus
Xenopus laevis - embryology
Xenopus laevis - genetics
Xenopus Proteins - biosynthesis
Xenopus Proteins - genetics
Xenopus Proteins - physiology
title FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FoxH1%20mediates%20a%20Grg4%20and%20Smad2%20dependent%20transcriptional%20switch%20in%20Nodal%20signaling%20during%20Xenopus%20mesoderm%20development&rft.jtitle=Developmental%20biology&rft.au=Reid,%20Christine%20D.&rft.date=2016-06-01&rft.volume=414&rft.issue=1&rft.spage=34&rft.epage=44&rft.pages=34-44&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2016.04.006&rft_dat=%3Cproquest_pubme%3E1836631544%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790616310&rft_id=info:pmid/27085753&rft_els_id=S0012160616300239&rfr_iscdi=true