Mechanisms of physiological and epileptic HFO generation

High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in neurobiology 2012-09, Vol.98 (3), p.250-264
Hauptverfasser: Jefferys, John G R, Menendez de la Prida, Liset, Wendling, Fabrice, Bragin, Anatol, Avoli, Massimo, Timofeev, Igor, Lopes da Silva, Fernando H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 3
container_start_page 250
container_title Progress in neurobiology
container_volume 98
creator Jefferys, John G R
Menendez de la Prida, Liset
Wendling, Fabrice
Bragin, Anatol
Avoli, Massimo
Timofeev, Igor
Lopes da Silva, Fernando H
description High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs.
doi_str_mv 10.1016/j.pneurobio.2012.02.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4873284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1125241896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-64e43749d7ec338d387f796f29342a523b5c22ce177a988d6c01ad0efed18f953</originalsourceid><addsrcrecordid>eNqFUU1Lw0AQXUTR-vEXNEc9pM5-JbsXQUStUPGi52W7mbRb0mzMpkL_vQnVol6EgYGZ9958PEIuKIwp0Ox6OW5qXLdh5sOYAWVj6APkHhlRlfNUUqr2yQg40BRAsSNyHOMSADIO_JAcMSYYaAUjop7RLWzt4yomoUyaxSb6UIW5d7ZKbF0k2PgKm867ZPLwksyxxtZ2PtSn5KC0VcSzr3xC3h7uX-8m6fTl8enudpo6KaFLM4GC50IXOTrOVcFVXuY6K5nmglnJ-Ew6xhzSPLdaqSJzQG0BWGJBVaklPyE3W91mPVth4bDuWluZpvUr225MsN787tR-Yebhw4j-EUyJXuBqK7D4Q5vcTs1QA9AglFAftMdefg1rw_saY2dWPjqsKltjWEdDKZNMUKWz_6HApeSg-XBCvoW6NsTYYrlbg4IZ7DRLs7PTDHYa6AMG5vnP43e8b__4J_qEndw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035530935</pqid></control><display><type>article</type><title>Mechanisms of physiological and epileptic HFO generation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jefferys, John G R ; Menendez de la Prida, Liset ; Wendling, Fabrice ; Bragin, Anatol ; Avoli, Massimo ; Timofeev, Igor ; Lopes da Silva, Fernando H</creator><creatorcontrib>Jefferys, John G R ; Menendez de la Prida, Liset ; Wendling, Fabrice ; Bragin, Anatol ; Avoli, Massimo ; Timofeev, Igor ; Lopes da Silva, Fernando H</creatorcontrib><description>High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs.</description><identifier>ISSN: 0301-0082</identifier><identifier>EISSN: 1873-5118</identifier><identifier>DOI: 10.1016/j.pneurobio.2012.02.005</identifier><identifier>PMID: 22420980</identifier><language>eng</language><publisher>England: Elsevier</publisher><subject>Animals ; Bioengineering ; Biological Clocks ; Epilepsy ; Epilepsy - physiopathology ; Hippocampus ; Hippocampus - physiopathology ; Humans ; Indexing in process ; Life Sciences ; Models, Neurological ; Nerve Net ; Nerve Net - physiopathology ; Neurons and Cognition</subject><ispartof>Progress in neurobiology, 2012-09, Vol.98 (3), p.250-264</ispartof><rights>Copyright © 2012. Published by Elsevier Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-64e43749d7ec338d387f796f29342a523b5c22ce177a988d6c01ad0efed18f953</citedby><cites>FETCH-LOGICAL-c550t-64e43749d7ec338d387f796f29342a523b5c22ce177a988d6c01ad0efed18f953</cites><orcidid>0000-0003-2428-9665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22420980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00904848$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jefferys, John G R</creatorcontrib><creatorcontrib>Menendez de la Prida, Liset</creatorcontrib><creatorcontrib>Wendling, Fabrice</creatorcontrib><creatorcontrib>Bragin, Anatol</creatorcontrib><creatorcontrib>Avoli, Massimo</creatorcontrib><creatorcontrib>Timofeev, Igor</creatorcontrib><creatorcontrib>Lopes da Silva, Fernando H</creatorcontrib><title>Mechanisms of physiological and epileptic HFO generation</title><title>Progress in neurobiology</title><addtitle>Prog Neurobiol</addtitle><description>High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs.</description><subject>Animals</subject><subject>Bioengineering</subject><subject>Biological Clocks</subject><subject>Epilepsy</subject><subject>Epilepsy - physiopathology</subject><subject>Hippocampus</subject><subject>Hippocampus - physiopathology</subject><subject>Humans</subject><subject>Indexing in process</subject><subject>Life Sciences</subject><subject>Models, Neurological</subject><subject>Nerve Net</subject><subject>Nerve Net - physiopathology</subject><subject>Neurons and Cognition</subject><issn>0301-0082</issn><issn>1873-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1Lw0AQXUTR-vEXNEc9pM5-JbsXQUStUPGi52W7mbRb0mzMpkL_vQnVol6EgYGZ9958PEIuKIwp0Ox6OW5qXLdh5sOYAWVj6APkHhlRlfNUUqr2yQg40BRAsSNyHOMSADIO_JAcMSYYaAUjop7RLWzt4yomoUyaxSb6UIW5d7ZKbF0k2PgKm867ZPLwksyxxtZ2PtSn5KC0VcSzr3xC3h7uX-8m6fTl8enudpo6KaFLM4GC50IXOTrOVcFVXuY6K5nmglnJ-Ew6xhzSPLdaqSJzQG0BWGJBVaklPyE3W91mPVth4bDuWluZpvUr225MsN787tR-Yebhw4j-EUyJXuBqK7D4Q5vcTs1QA9AglFAftMdefg1rw_saY2dWPjqsKltjWEdDKZNMUKWz_6HApeSg-XBCvoW6NsTYYrlbg4IZ7DRLs7PTDHYa6AMG5vnP43e8b__4J_qEndw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Jefferys, John G R</creator><creator>Menendez de la Prida, Liset</creator><creator>Wendling, Fabrice</creator><creator>Bragin, Anatol</creator><creator>Avoli, Massimo</creator><creator>Timofeev, Igor</creator><creator>Lopes da Silva, Fernando H</creator><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2428-9665</orcidid></search><sort><creationdate>20120901</creationdate><title>Mechanisms of physiological and epileptic HFO generation</title><author>Jefferys, John G R ; Menendez de la Prida, Liset ; Wendling, Fabrice ; Bragin, Anatol ; Avoli, Massimo ; Timofeev, Igor ; Lopes da Silva, Fernando H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-64e43749d7ec338d387f796f29342a523b5c22ce177a988d6c01ad0efed18f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Bioengineering</topic><topic>Biological Clocks</topic><topic>Epilepsy</topic><topic>Epilepsy - physiopathology</topic><topic>Hippocampus</topic><topic>Hippocampus - physiopathology</topic><topic>Humans</topic><topic>Indexing in process</topic><topic>Life Sciences</topic><topic>Models, Neurological</topic><topic>Nerve Net</topic><topic>Nerve Net - physiopathology</topic><topic>Neurons and Cognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jefferys, John G R</creatorcontrib><creatorcontrib>Menendez de la Prida, Liset</creatorcontrib><creatorcontrib>Wendling, Fabrice</creatorcontrib><creatorcontrib>Bragin, Anatol</creatorcontrib><creatorcontrib>Avoli, Massimo</creatorcontrib><creatorcontrib>Timofeev, Igor</creatorcontrib><creatorcontrib>Lopes da Silva, Fernando H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jefferys, John G R</au><au>Menendez de la Prida, Liset</au><au>Wendling, Fabrice</au><au>Bragin, Anatol</au><au>Avoli, Massimo</au><au>Timofeev, Igor</au><au>Lopes da Silva, Fernando H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of physiological and epileptic HFO generation</atitle><jtitle>Progress in neurobiology</jtitle><addtitle>Prog Neurobiol</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>98</volume><issue>3</issue><spage>250</spage><epage>264</epage><pages>250-264</pages><issn>0301-0082</issn><eissn>1873-5118</eissn><abstract>High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs.</abstract><cop>England</cop><pub>Elsevier</pub><pmid>22420980</pmid><doi>10.1016/j.pneurobio.2012.02.005</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2428-9665</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-0082
ispartof Progress in neurobiology, 2012-09, Vol.98 (3), p.250-264
issn 0301-0082
1873-5118
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4873284
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Bioengineering
Biological Clocks
Epilepsy
Epilepsy - physiopathology
Hippocampus
Hippocampus - physiopathology
Humans
Indexing in process
Life Sciences
Models, Neurological
Nerve Net
Nerve Net - physiopathology
Neurons and Cognition
title Mechanisms of physiological and epileptic HFO generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20physiological%20and%20epileptic%20HFO%20generation&rft.jtitle=Progress%20in%20neurobiology&rft.au=Jefferys,%20John%20G%20R&rft.date=2012-09-01&rft.volume=98&rft.issue=3&rft.spage=250&rft.epage=264&rft.pages=250-264&rft.issn=0301-0082&rft.eissn=1873-5118&rft_id=info:doi/10.1016/j.pneurobio.2012.02.005&rft_dat=%3Cproquest_pubme%3E1125241896%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035530935&rft_id=info:pmid/22420980&rfr_iscdi=true