The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response

Summary SloR, a 25‐kDa metalloregulatory protein in Streptococcus mutans modulates the expression of multiple genes, including the sloABC operon that encodes essential Mn2+ transport and genes that promote cariogenesis. In this study, we report on SloC‐ and SloR‐deficient strains of S. mutans (GMS28...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular oral microbiology 2016-12, Vol.31 (6), p.526-539
Hauptverfasser: Crepps, S.C., Fields, E.E., Galan, D., Corbett, J.P., Von Hasseln, E.R., Spatafora, G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 6
container_start_page 526
container_title Molecular oral microbiology
container_volume 31
creator Crepps, S.C.
Fields, E.E.
Galan, D.
Corbett, J.P.
Von Hasseln, E.R.
Spatafora, G.A.
description Summary SloR, a 25‐kDa metalloregulatory protein in Streptococcus mutans modulates the expression of multiple genes, including the sloABC operon that encodes essential Mn2+ transport and genes that promote cariogenesis. In this study, we report on SloC‐ and SloR‐deficient strains of S. mutans (GMS284 and GMS584, respectively) that demonstrate compromised survivorship compared with their UA159 wild‐type progenitor and their complemented strains (GMS285 and GMS585, respectively), when challenged with streptonigrin and/or in growth competition experiments. The results of streptonigrin assays revealed significantly larger zones of inhibition for GMS584 than for either UA159 or GMS585, indicating weakened S. mutans survivorship in the absence of SloR. Competition assays revealed a compromised ability for GMS284 and GMS584 to survive peroxide challenge compared with their SloC‐ and SloR‐proficient counterparts. These findings are consistent with a role for SloC and SloR in S. mutans aerotolerance. We also predicted differential expression of oxidative stress tolerance genes in GMS584 versus UA159 and GMS585 when grown aerobically. The results of quantitative RT‐PCR experiments revealed S. mutans sod, tpx, and sloC expression that was upregulated in GMS584 compared with UA159 and GMS585, indicating that the impact of oxidative stress on S. mutans is more severe in the absence of SloR than in its presence. The results of electrophoretic mobility shift assays indicate that SloR does not bind to the sod or tpx promoter regions directly, implicating intermediaries that may arbitrate the SloR response to oxidative stress.
doi_str_mv 10.1111/omi.12147
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4871787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1846404666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5147-89a50634461496250f49c0b7bb9623ca352a075ff5b04540fd9869ab7e5d300f3</originalsourceid><addsrcrecordid>eNqNkV1rFTEQhoMottRe-Ack4I1ebJtsvnZvBCmeWlpb0EoFL0I2m21Ts5tjkj22_96ppz2oIDgXyYR55mUyL0LPKdmjEPtx9Hu0plw9Qts14bSihPLHm5zILbSb8zWBYEAp9RRt1VIoRZtmG309v3L4U4gf8eiKCSEmdzkHU2LCPmM_rWJYuR4SXO7AktyyRButnTMe52KmjOON703xK4czlHPGcCzjlN0z9GQwIbvd-3sHfV68Oz94X52cHR4dvD2prICBqqY1gkjGuaS8lbUgA28t6VTXwYtZw0RtiBLDIDrCBSdD3zayNZ1yomeEDGwHvVnrLududL11U0km6GXyo0m3Ohqv_6xM_kpfxpXmjaKqUSDw6l4gxe-zy0WPPlsXgplcnLOmDZeccCnlf6A1ULBmAejLv9DrOKcJNgEUE6DZSA7U6zVlU8w5uWEzNyX6zmANButfBgP74vePbsgHOwHYXwM_fHC3_1bSZx-OHiSrdYfPxd1sOkz6pqViSuiL00N9Icnx4vh0ob-wn9xovqM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835846864</pqid></control><display><type>article</type><title>The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Crepps, S.C. ; Fields, E.E. ; Galan, D. ; Corbett, J.P. ; Von Hasseln, E.R. ; Spatafora, G.A.</creator><creatorcontrib>Crepps, S.C. ; Fields, E.E. ; Galan, D. ; Corbett, J.P. ; Von Hasseln, E.R. ; Spatafora, G.A.</creatorcontrib><description>Summary SloR, a 25‐kDa metalloregulatory protein in Streptococcus mutans modulates the expression of multiple genes, including the sloABC operon that encodes essential Mn2+ transport and genes that promote cariogenesis. In this study, we report on SloC‐ and SloR‐deficient strains of S. mutans (GMS284 and GMS584, respectively) that demonstrate compromised survivorship compared with their UA159 wild‐type progenitor and their complemented strains (GMS285 and GMS585, respectively), when challenged with streptonigrin and/or in growth competition experiments. The results of streptonigrin assays revealed significantly larger zones of inhibition for GMS584 than for either UA159 or GMS585, indicating weakened S. mutans survivorship in the absence of SloR. Competition assays revealed a compromised ability for GMS284 and GMS584 to survive peroxide challenge compared with their SloC‐ and SloR‐proficient counterparts. These findings are consistent with a role for SloC and SloR in S. mutans aerotolerance. We also predicted differential expression of oxidative stress tolerance genes in GMS584 versus UA159 and GMS585 when grown aerobically. The results of quantitative RT‐PCR experiments revealed S. mutans sod, tpx, and sloC expression that was upregulated in GMS584 compared with UA159 and GMS585, indicating that the impact of oxidative stress on S. mutans is more severe in the absence of SloR than in its presence. The results of electrophoretic mobility shift assays indicate that SloR does not bind to the sod or tpx promoter regions directly, implicating intermediaries that may arbitrate the SloR response to oxidative stress.</description><identifier>ISSN: 2041-1006</identifier><identifier>EISSN: 2041-1014</identifier><identifier>DOI: 10.1111/omi.12147</identifier><identifier>PMID: 26577188</identifier><language>eng</language><publisher>Denmark: Blackwell Publishing Ltd</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; dental caries ; Dentistry ; DNA, Bacterial ; Gene Expression Regulation, Bacterial ; Genetic Complementation Test ; Hydrogen Peroxide - pharmacology ; Metals ; Mutation ; oxidative stress ; Oxidative Stress - genetics ; SloR ; streptococci ; Streptococcus mutans ; Streptococcus mutans - drug effects ; Streptococcus mutans - genetics ; Streptococcus mutans - pathogenicity ; Streptococcus mutans - physiology ; Streptonigrin - pharmacology ; Superoxide Dismutase-1 - genetics ; Virulence - genetics</subject><ispartof>Molecular oral microbiology, 2016-12, Vol.31 (6), p.526-539</ispartof><rights>2015 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2015 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5147-89a50634461496250f49c0b7bb9623ca352a075ff5b04540fd9869ab7e5d300f3</citedby><cites>FETCH-LOGICAL-c5147-89a50634461496250f49c0b7bb9623ca352a075ff5b04540fd9869ab7e5d300f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fomi.12147$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fomi.12147$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26577188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crepps, S.C.</creatorcontrib><creatorcontrib>Fields, E.E.</creatorcontrib><creatorcontrib>Galan, D.</creatorcontrib><creatorcontrib>Corbett, J.P.</creatorcontrib><creatorcontrib>Von Hasseln, E.R.</creatorcontrib><creatorcontrib>Spatafora, G.A.</creatorcontrib><title>The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response</title><title>Molecular oral microbiology</title><addtitle>Mol oral Microbiol</addtitle><description>Summary SloR, a 25‐kDa metalloregulatory protein in Streptococcus mutans modulates the expression of multiple genes, including the sloABC operon that encodes essential Mn2+ transport and genes that promote cariogenesis. In this study, we report on SloC‐ and SloR‐deficient strains of S. mutans (GMS284 and GMS584, respectively) that demonstrate compromised survivorship compared with their UA159 wild‐type progenitor and their complemented strains (GMS285 and GMS585, respectively), when challenged with streptonigrin and/or in growth competition experiments. The results of streptonigrin assays revealed significantly larger zones of inhibition for GMS584 than for either UA159 or GMS585, indicating weakened S. mutans survivorship in the absence of SloR. Competition assays revealed a compromised ability for GMS284 and GMS584 to survive peroxide challenge compared with their SloC‐ and SloR‐proficient counterparts. These findings are consistent with a role for SloC and SloR in S. mutans aerotolerance. We also predicted differential expression of oxidative stress tolerance genes in GMS584 versus UA159 and GMS585 when grown aerobically. The results of quantitative RT‐PCR experiments revealed S. mutans sod, tpx, and sloC expression that was upregulated in GMS584 compared with UA159 and GMS585, indicating that the impact of oxidative stress on S. mutans is more severe in the absence of SloR than in its presence. The results of electrophoretic mobility shift assays indicate that SloR does not bind to the sod or tpx promoter regions directly, implicating intermediaries that may arbitrate the SloR response to oxidative stress.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>dental caries</subject><subject>Dentistry</subject><subject>DNA, Bacterial</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetic Complementation Test</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Metals</subject><subject>Mutation</subject><subject>oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>SloR</subject><subject>streptococci</subject><subject>Streptococcus mutans</subject><subject>Streptococcus mutans - drug effects</subject><subject>Streptococcus mutans - genetics</subject><subject>Streptococcus mutans - pathogenicity</subject><subject>Streptococcus mutans - physiology</subject><subject>Streptonigrin - pharmacology</subject><subject>Superoxide Dismutase-1 - genetics</subject><subject>Virulence - genetics</subject><issn>2041-1006</issn><issn>2041-1014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1rFTEQhoMottRe-Ack4I1ebJtsvnZvBCmeWlpb0EoFL0I2m21Ts5tjkj22_96ppz2oIDgXyYR55mUyL0LPKdmjEPtx9Hu0plw9Qts14bSihPLHm5zILbSb8zWBYEAp9RRt1VIoRZtmG309v3L4U4gf8eiKCSEmdzkHU2LCPmM_rWJYuR4SXO7AktyyRButnTMe52KmjOON703xK4czlHPGcCzjlN0z9GQwIbvd-3sHfV68Oz94X52cHR4dvD2prICBqqY1gkjGuaS8lbUgA28t6VTXwYtZw0RtiBLDIDrCBSdD3zayNZ1yomeEDGwHvVnrLududL11U0km6GXyo0m3Ohqv_6xM_kpfxpXmjaKqUSDw6l4gxe-zy0WPPlsXgplcnLOmDZeccCnlf6A1ULBmAejLv9DrOKcJNgEUE6DZSA7U6zVlU8w5uWEzNyX6zmANButfBgP74vePbsgHOwHYXwM_fHC3_1bSZx-OHiSrdYfPxd1sOkz6pqViSuiL00N9Icnx4vh0ob-wn9xovqM</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Crepps, S.C.</creator><creator>Fields, E.E.</creator><creator>Galan, D.</creator><creator>Corbett, J.P.</creator><creator>Von Hasseln, E.R.</creator><creator>Spatafora, G.A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201612</creationdate><title>The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response</title><author>Crepps, S.C. ; Fields, E.E. ; Galan, D. ; Corbett, J.P. ; Von Hasseln, E.R. ; Spatafora, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5147-89a50634461496250f49c0b7bb9623ca352a075ff5b04540fd9869ab7e5d300f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>dental caries</topic><topic>Dentistry</topic><topic>DNA, Bacterial</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetic Complementation Test</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Metals</topic><topic>Mutation</topic><topic>oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>SloR</topic><topic>streptococci</topic><topic>Streptococcus mutans</topic><topic>Streptococcus mutans - drug effects</topic><topic>Streptococcus mutans - genetics</topic><topic>Streptococcus mutans - pathogenicity</topic><topic>Streptococcus mutans - physiology</topic><topic>Streptonigrin - pharmacology</topic><topic>Superoxide Dismutase-1 - genetics</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crepps, S.C.</creatorcontrib><creatorcontrib>Fields, E.E.</creatorcontrib><creatorcontrib>Galan, D.</creatorcontrib><creatorcontrib>Corbett, J.P.</creatorcontrib><creatorcontrib>Von Hasseln, E.R.</creatorcontrib><creatorcontrib>Spatafora, G.A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular oral microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crepps, S.C.</au><au>Fields, E.E.</au><au>Galan, D.</au><au>Corbett, J.P.</au><au>Von Hasseln, E.R.</au><au>Spatafora, G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response</atitle><jtitle>Molecular oral microbiology</jtitle><addtitle>Mol oral Microbiol</addtitle><date>2016-12</date><risdate>2016</risdate><volume>31</volume><issue>6</issue><spage>526</spage><epage>539</epage><pages>526-539</pages><issn>2041-1006</issn><eissn>2041-1014</eissn><abstract>Summary SloR, a 25‐kDa metalloregulatory protein in Streptococcus mutans modulates the expression of multiple genes, including the sloABC operon that encodes essential Mn2+ transport and genes that promote cariogenesis. In this study, we report on SloC‐ and SloR‐deficient strains of S. mutans (GMS284 and GMS584, respectively) that demonstrate compromised survivorship compared with their UA159 wild‐type progenitor and their complemented strains (GMS285 and GMS585, respectively), when challenged with streptonigrin and/or in growth competition experiments. The results of streptonigrin assays revealed significantly larger zones of inhibition for GMS584 than for either UA159 or GMS585, indicating weakened S. mutans survivorship in the absence of SloR. Competition assays revealed a compromised ability for GMS284 and GMS584 to survive peroxide challenge compared with their SloC‐ and SloR‐proficient counterparts. These findings are consistent with a role for SloC and SloR in S. mutans aerotolerance. We also predicted differential expression of oxidative stress tolerance genes in GMS584 versus UA159 and GMS585 when grown aerobically. The results of quantitative RT‐PCR experiments revealed S. mutans sod, tpx, and sloC expression that was upregulated in GMS584 compared with UA159 and GMS585, indicating that the impact of oxidative stress on S. mutans is more severe in the absence of SloR than in its presence. The results of electrophoretic mobility shift assays indicate that SloR does not bind to the sod or tpx promoter regions directly, implicating intermediaries that may arbitrate the SloR response to oxidative stress.</abstract><cop>Denmark</cop><pub>Blackwell Publishing Ltd</pub><pmid>26577188</pmid><doi>10.1111/omi.12147</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1006
ispartof Molecular oral microbiology, 2016-12, Vol.31 (6), p.526-539
issn 2041-1006
2041-1014
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4871787
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bacterial Proteins - genetics
Bacterial Proteins - metabolism
dental caries
Dentistry
DNA, Bacterial
Gene Expression Regulation, Bacterial
Genetic Complementation Test
Hydrogen Peroxide - pharmacology
Metals
Mutation
oxidative stress
Oxidative Stress - genetics
SloR
streptococci
Streptococcus mutans
Streptococcus mutans - drug effects
Streptococcus mutans - genetics
Streptococcus mutans - pathogenicity
Streptococcus mutans - physiology
Streptonigrin - pharmacology
Superoxide Dismutase-1 - genetics
Virulence - genetics
title The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20SloR%20metalloregulator%20is%20involved%20in%20the%20Streptococcus%20mutans%20oxidative%20stress%20response&rft.jtitle=Molecular%20oral%20microbiology&rft.au=Crepps,%20S.C.&rft.date=2016-12&rft.volume=31&rft.issue=6&rft.spage=526&rft.epage=539&rft.pages=526-539&rft.issn=2041-1006&rft.eissn=2041-1014&rft_id=info:doi/10.1111/omi.12147&rft_dat=%3Cproquest_pubme%3E1846404666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835846864&rft_id=info:pmid/26577188&rfr_iscdi=true