Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss

FUS is an RNA‐binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS‐containing aggregates are often associated with concomitant loss of nuclear FUS. Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2016-05, Vol.35 (10), p.1077-1097
Hauptverfasser: Scekic-Zahirovic, Jelena, Sendscheid, Oliver, El Oussini, Hajer, Jambeau, Mélanie, Sun, Ying, Mersmann, Sina, Wagner, Marina, Dieterlé, Stéphane, Sinniger, Jérome, Dirrig-Grosch, Sylvie, Drenner, Kevin, Birling, Marie-Christine, Qiu, Jinsong, Zhou, Yu, Li, Hairi, Fu, Xiang-Dong, Rouaux, Caroline, Shelkovnikova, Tatyana, Witting, Anke, Ludolph, Albert C, Kiefer, Friedemann, Storkebaum, Erik, Lagier-Tourenne, Clotilde, Dupuis, Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1097
container_issue 10
container_start_page 1077
container_title The EMBO journal
container_volume 35
creator Scekic-Zahirovic, Jelena
Sendscheid, Oliver
El Oussini, Hajer
Jambeau, Mélanie
Sun, Ying
Mersmann, Sina
Wagner, Marina
Dieterlé, Stéphane
Sinniger, Jérome
Dirrig-Grosch, Sylvie
Drenner, Kevin
Birling, Marie-Christine
Qiu, Jinsong
Zhou, Yu
Li, Hairi
Fu, Xiang-Dong
Rouaux, Caroline
Shelkovnikova, Tatyana
Witting, Anke
Ludolph, Albert C
Kiefer, Friedemann
Storkebaum, Erik
Lagier-Tourenne, Clotilde
Dupuis, Luc
description FUS is an RNA‐binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS‐containing aggregates are often associated with concomitant loss of nuclear FUS. Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell‐specific CRE‐mediated expression of wild‐type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. Synopsis Truncation of FUS, leading to cytoplasmic mislocalization, as well as loss of FUS leads to perinatal lethality in mice and alterations in RNA expression and splicing. However, only FUS cytoplasmic mislocalization triggers motor neuron degeneration through motor neuron intrinsic toxicity. Cytoplasmic FUS mislocalization leads to perinatal death and motor neuron degeneration in knockin mice. Complete loss of FUS leads to perinatal death in the absence of motor neuron degeneration. Cytoplasmic FUS mislocalization leads to alterations in gene expression and RNA splicing partially overlapping with complete loss of FUS. Selective rescue of cytoplasmic FUS mislocalization in motor neurons prevents motor neuron degeneration, but not perinatal death. Graphical Abstract Cytoplasmic accumulation of ALS‐associated FUS mutants not only leads to nuclear loss‐of‐function phenotypes, but also to motor neuron degeneration via toxic gain‐of‐function mechanisms.
doi_str_mv 10.15252/embj.201592559
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4868956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4057724491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6549-44039bc1fd671e5a4a5d2888cc52545f3548935f3113eeafdcbc9bcdeed88d1c3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EoqWwZocssSWtHT9is0Bqhz5AU0BiKpaWx3GmHhJ7sJ3S_nsMKaMBCbG6i_udcx8HgOcYHWJWs_rIDsv1YY0wkzVj8gHYx5SjqkYNewj2Uc1xRbGQe-BJSmuEEBMNfgz2ai4Z5hjtg24Rbp2BK-08DB3sRm-yCx52MQxwGLP2GZ5dfYabGLItjEvQxNE43cMcYI5utbIRGtv3UI85-DCEMcEh5BCht2MsVn1I6Sl41Ok-2Wf39QBcnZ0uZhfV_OP5u9nxvDKcUVlRiohcGty1vMGWaapZWwshjCnHUtYRRoUkpWJMrNVda5am8K21rRAtNuQAvJl8N-NysK2xPkfdq010g453Kmin_ux4d61W4UZRwYVkvBi8mgyu_5JdHM-V88nGQSFCGoYFucEFf3k_L4Zvo01ZrcMYfTlR4UZITCiXslBHE2Vi-UW03dYZI_UrR_UzR7XNsShe7N6x5X8HV4DXE_Dd9fbuf37q9PLk_a47msSp6HwJcGfrfy5UTRKXsr3dztPxq-JNeYf68uFcLcTsbX35aaEI-QENuctV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789134699</pqid></control><display><type>article</type><title>Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Scekic-Zahirovic, Jelena ; Sendscheid, Oliver ; El Oussini, Hajer ; Jambeau, Mélanie ; Sun, Ying ; Mersmann, Sina ; Wagner, Marina ; Dieterlé, Stéphane ; Sinniger, Jérome ; Dirrig-Grosch, Sylvie ; Drenner, Kevin ; Birling, Marie-Christine ; Qiu, Jinsong ; Zhou, Yu ; Li, Hairi ; Fu, Xiang-Dong ; Rouaux, Caroline ; Shelkovnikova, Tatyana ; Witting, Anke ; Ludolph, Albert C ; Kiefer, Friedemann ; Storkebaum, Erik ; Lagier-Tourenne, Clotilde ; Dupuis, Luc</creator><creatorcontrib>Scekic-Zahirovic, Jelena ; Sendscheid, Oliver ; El Oussini, Hajer ; Jambeau, Mélanie ; Sun, Ying ; Mersmann, Sina ; Wagner, Marina ; Dieterlé, Stéphane ; Sinniger, Jérome ; Dirrig-Grosch, Sylvie ; Drenner, Kevin ; Birling, Marie-Christine ; Qiu, Jinsong ; Zhou, Yu ; Li, Hairi ; Fu, Xiang-Dong ; Rouaux, Caroline ; Shelkovnikova, Tatyana ; Witting, Anke ; Ludolph, Albert C ; Kiefer, Friedemann ; Storkebaum, Erik ; Lagier-Tourenne, Clotilde ; Dupuis, Luc</creatorcontrib><description>FUS is an RNA‐binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS‐containing aggregates are often associated with concomitant loss of nuclear FUS. Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell‐specific CRE‐mediated expression of wild‐type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. Synopsis Truncation of FUS, leading to cytoplasmic mislocalization, as well as loss of FUS leads to perinatal lethality in mice and alterations in RNA expression and splicing. However, only FUS cytoplasmic mislocalization triggers motor neuron degeneration through motor neuron intrinsic toxicity. Cytoplasmic FUS mislocalization leads to perinatal death and motor neuron degeneration in knockin mice. Complete loss of FUS leads to perinatal death in the absence of motor neuron degeneration. Cytoplasmic FUS mislocalization leads to alterations in gene expression and RNA splicing partially overlapping with complete loss of FUS. Selective rescue of cytoplasmic FUS mislocalization in motor neurons prevents motor neuron degeneration, but not perinatal death. Graphical Abstract Cytoplasmic accumulation of ALS‐associated FUS mutants not only leads to nuclear loss‐of‐function phenotypes, but also to motor neuron degeneration via toxic gain‐of‐function mechanisms.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201592559</identifier><identifier>PMID: 26951610</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Amyotrophic lateral sclerosis ; Animals ; Body weight ; Brain ; Brain - metabolism ; Cellular biology ; Cognitive science ; Cytoplasm ; Cytoplasm - metabolism ; Dementia disorders ; EMBO24 ; EMBO27 ; Exons ; Female ; frontotemporal dementia ; FUS ; Gene expression ; Heart Conduction System ; HEK293 Cells ; Humans ; Life Sciences ; Male ; Mice, Inbred C57BL ; Mice, Transgenic ; Middle Aged ; Molecular Sequence Data ; Mortality ; motor neuron degeneration ; Motor Neurons ; Motor Neurons - metabolism ; Mutation ; Myotonic Dystrophy ; NAV1.5 Voltage-Gated Sodium Channel ; Neurons ; Nucleotide Motifs ; PY-NLS ; RNA-Binding Protein FUS ; RNA-Binding Protein FUS - genetics ; RNA-Binding Protein FUS - metabolism ; RNA-Binding Proteins ; Rodents ; Sodium Channels ; Spinal Cord ; Spinal Cord - metabolism ; Xenopus</subject><ispartof>The EMBO journal, 2016-05, Vol.35 (10), p.1077-1097</ispartof><rights>The Authors. Published under the terms of the CC BY NC ND 4.0 license 2016</rights><rights>2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2016 EMBO</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6549-44039bc1fd671e5a4a5d2888cc52545f3548935f3113eeafdcbc9bcdeed88d1c3</citedby><cites>FETCH-LOGICAL-c6549-44039bc1fd671e5a4a5d2888cc52545f3548935f3113eeafdcbc9bcdeed88d1c3</cites><orcidid>0000-0002-5401-0904 ; 0000-0002-5724-2903 ; 0000-0002-3058-8322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868956/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868956/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26951610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-03375183$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Scekic-Zahirovic, Jelena</creatorcontrib><creatorcontrib>Sendscheid, Oliver</creatorcontrib><creatorcontrib>El Oussini, Hajer</creatorcontrib><creatorcontrib>Jambeau, Mélanie</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Mersmann, Sina</creatorcontrib><creatorcontrib>Wagner, Marina</creatorcontrib><creatorcontrib>Dieterlé, Stéphane</creatorcontrib><creatorcontrib>Sinniger, Jérome</creatorcontrib><creatorcontrib>Dirrig-Grosch, Sylvie</creatorcontrib><creatorcontrib>Drenner, Kevin</creatorcontrib><creatorcontrib>Birling, Marie-Christine</creatorcontrib><creatorcontrib>Qiu, Jinsong</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Li, Hairi</creatorcontrib><creatorcontrib>Fu, Xiang-Dong</creatorcontrib><creatorcontrib>Rouaux, Caroline</creatorcontrib><creatorcontrib>Shelkovnikova, Tatyana</creatorcontrib><creatorcontrib>Witting, Anke</creatorcontrib><creatorcontrib>Ludolph, Albert C</creatorcontrib><creatorcontrib>Kiefer, Friedemann</creatorcontrib><creatorcontrib>Storkebaum, Erik</creatorcontrib><creatorcontrib>Lagier-Tourenne, Clotilde</creatorcontrib><creatorcontrib>Dupuis, Luc</creatorcontrib><title>Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>FUS is an RNA‐binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS‐containing aggregates are often associated with concomitant loss of nuclear FUS. Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell‐specific CRE‐mediated expression of wild‐type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. Synopsis Truncation of FUS, leading to cytoplasmic mislocalization, as well as loss of FUS leads to perinatal lethality in mice and alterations in RNA expression and splicing. However, only FUS cytoplasmic mislocalization triggers motor neuron degeneration through motor neuron intrinsic toxicity. Cytoplasmic FUS mislocalization leads to perinatal death and motor neuron degeneration in knockin mice. Complete loss of FUS leads to perinatal death in the absence of motor neuron degeneration. Cytoplasmic FUS mislocalization leads to alterations in gene expression and RNA splicing partially overlapping with complete loss of FUS. Selective rescue of cytoplasmic FUS mislocalization in motor neurons prevents motor neuron degeneration, but not perinatal death. Graphical Abstract Cytoplasmic accumulation of ALS‐associated FUS mutants not only leads to nuclear loss‐of‐function phenotypes, but also to motor neuron degeneration via toxic gain‐of‐function mechanisms.</description><subject>Amyotrophic lateral sclerosis</subject><subject>Animals</subject><subject>Body weight</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Cellular biology</subject><subject>Cognitive science</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Dementia disorders</subject><subject>EMBO24</subject><subject>EMBO27</subject><subject>Exons</subject><subject>Female</subject><subject>frontotemporal dementia</subject><subject>FUS</subject><subject>Gene expression</subject><subject>Heart Conduction System</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Middle Aged</subject><subject>Molecular Sequence Data</subject><subject>Mortality</subject><subject>motor neuron degeneration</subject><subject>Motor Neurons</subject><subject>Motor Neurons - metabolism</subject><subject>Mutation</subject><subject>Myotonic Dystrophy</subject><subject>NAV1.5 Voltage-Gated Sodium Channel</subject><subject>Neurons</subject><subject>Nucleotide Motifs</subject><subject>PY-NLS</subject><subject>RNA-Binding Protein FUS</subject><subject>RNA-Binding Protein FUS - genetics</subject><subject>RNA-Binding Protein FUS - metabolism</subject><subject>RNA-Binding Proteins</subject><subject>Rodents</subject><subject>Sodium Channels</subject><subject>Spinal Cord</subject><subject>Spinal Cord - metabolism</subject><subject>Xenopus</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EoqWwZocssSWtHT9is0Bqhz5AU0BiKpaWx3GmHhJ7sJ3S_nsMKaMBCbG6i_udcx8HgOcYHWJWs_rIDsv1YY0wkzVj8gHYx5SjqkYNewj2Uc1xRbGQe-BJSmuEEBMNfgz2ai4Z5hjtg24Rbp2BK-08DB3sRm-yCx52MQxwGLP2GZ5dfYabGLItjEvQxNE43cMcYI5utbIRGtv3UI85-DCEMcEh5BCht2MsVn1I6Sl41Ok-2Wf39QBcnZ0uZhfV_OP5u9nxvDKcUVlRiohcGty1vMGWaapZWwshjCnHUtYRRoUkpWJMrNVda5am8K21rRAtNuQAvJl8N-NysK2xPkfdq010g453Kmin_ux4d61W4UZRwYVkvBi8mgyu_5JdHM-V88nGQSFCGoYFucEFf3k_L4Zvo01ZrcMYfTlR4UZITCiXslBHE2Vi-UW03dYZI_UrR_UzR7XNsShe7N6x5X8HV4DXE_Dd9fbuf37q9PLk_a47msSp6HwJcGfrfy5UTRKXsr3dztPxq-JNeYf68uFcLcTsbX35aaEI-QENuctV</recordid><startdate>20160517</startdate><enddate>20160517</enddate><creator>Scekic-Zahirovic, Jelena</creator><creator>Sendscheid, Oliver</creator><creator>El Oussini, Hajer</creator><creator>Jambeau, Mélanie</creator><creator>Sun, Ying</creator><creator>Mersmann, Sina</creator><creator>Wagner, Marina</creator><creator>Dieterlé, Stéphane</creator><creator>Sinniger, Jérome</creator><creator>Dirrig-Grosch, Sylvie</creator><creator>Drenner, Kevin</creator><creator>Birling, Marie-Christine</creator><creator>Qiu, Jinsong</creator><creator>Zhou, Yu</creator><creator>Li, Hairi</creator><creator>Fu, Xiang-Dong</creator><creator>Rouaux, Caroline</creator><creator>Shelkovnikova, Tatyana</creator><creator>Witting, Anke</creator><creator>Ludolph, Albert C</creator><creator>Kiefer, Friedemann</creator><creator>Storkebaum, Erik</creator><creator>Lagier-Tourenne, Clotilde</creator><creator>Dupuis, Luc</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5401-0904</orcidid><orcidid>https://orcid.org/0000-0002-5724-2903</orcidid><orcidid>https://orcid.org/0000-0002-3058-8322</orcidid></search><sort><creationdate>20160517</creationdate><title>Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss</title><author>Scekic-Zahirovic, Jelena ; Sendscheid, Oliver ; El Oussini, Hajer ; Jambeau, Mélanie ; Sun, Ying ; Mersmann, Sina ; Wagner, Marina ; Dieterlé, Stéphane ; Sinniger, Jérome ; Dirrig-Grosch, Sylvie ; Drenner, Kevin ; Birling, Marie-Christine ; Qiu, Jinsong ; Zhou, Yu ; Li, Hairi ; Fu, Xiang-Dong ; Rouaux, Caroline ; Shelkovnikova, Tatyana ; Witting, Anke ; Ludolph, Albert C ; Kiefer, Friedemann ; Storkebaum, Erik ; Lagier-Tourenne, Clotilde ; Dupuis, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6549-44039bc1fd671e5a4a5d2888cc52545f3548935f3113eeafdcbc9bcdeed88d1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>Animals</topic><topic>Body weight</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Cellular biology</topic><topic>Cognitive science</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Dementia disorders</topic><topic>EMBO24</topic><topic>EMBO27</topic><topic>Exons</topic><topic>Female</topic><topic>frontotemporal dementia</topic><topic>FUS</topic><topic>Gene expression</topic><topic>Heart Conduction System</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Middle Aged</topic><topic>Molecular Sequence Data</topic><topic>Mortality</topic><topic>motor neuron degeneration</topic><topic>Motor Neurons</topic><topic>Motor Neurons - metabolism</topic><topic>Mutation</topic><topic>Myotonic Dystrophy</topic><topic>NAV1.5 Voltage-Gated Sodium Channel</topic><topic>Neurons</topic><topic>Nucleotide Motifs</topic><topic>PY-NLS</topic><topic>RNA-Binding Protein FUS</topic><topic>RNA-Binding Protein FUS - genetics</topic><topic>RNA-Binding Protein FUS - metabolism</topic><topic>RNA-Binding Proteins</topic><topic>Rodents</topic><topic>Sodium Channels</topic><topic>Spinal Cord</topic><topic>Spinal Cord - metabolism</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scekic-Zahirovic, Jelena</creatorcontrib><creatorcontrib>Sendscheid, Oliver</creatorcontrib><creatorcontrib>El Oussini, Hajer</creatorcontrib><creatorcontrib>Jambeau, Mélanie</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Mersmann, Sina</creatorcontrib><creatorcontrib>Wagner, Marina</creatorcontrib><creatorcontrib>Dieterlé, Stéphane</creatorcontrib><creatorcontrib>Sinniger, Jérome</creatorcontrib><creatorcontrib>Dirrig-Grosch, Sylvie</creatorcontrib><creatorcontrib>Drenner, Kevin</creatorcontrib><creatorcontrib>Birling, Marie-Christine</creatorcontrib><creatorcontrib>Qiu, Jinsong</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Li, Hairi</creatorcontrib><creatorcontrib>Fu, Xiang-Dong</creatorcontrib><creatorcontrib>Rouaux, Caroline</creatorcontrib><creatorcontrib>Shelkovnikova, Tatyana</creatorcontrib><creatorcontrib>Witting, Anke</creatorcontrib><creatorcontrib>Ludolph, Albert C</creatorcontrib><creatorcontrib>Kiefer, Friedemann</creatorcontrib><creatorcontrib>Storkebaum, Erik</creatorcontrib><creatorcontrib>Lagier-Tourenne, Clotilde</creatorcontrib><creatorcontrib>Dupuis, Luc</creatorcontrib><collection>Istex</collection><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scekic-Zahirovic, Jelena</au><au>Sendscheid, Oliver</au><au>El Oussini, Hajer</au><au>Jambeau, Mélanie</au><au>Sun, Ying</au><au>Mersmann, Sina</au><au>Wagner, Marina</au><au>Dieterlé, Stéphane</au><au>Sinniger, Jérome</au><au>Dirrig-Grosch, Sylvie</au><au>Drenner, Kevin</au><au>Birling, Marie-Christine</au><au>Qiu, Jinsong</au><au>Zhou, Yu</au><au>Li, Hairi</au><au>Fu, Xiang-Dong</au><au>Rouaux, Caroline</au><au>Shelkovnikova, Tatyana</au><au>Witting, Anke</au><au>Ludolph, Albert C</au><au>Kiefer, Friedemann</au><au>Storkebaum, Erik</au><au>Lagier-Tourenne, Clotilde</au><au>Dupuis, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2016-05-17</date><risdate>2016</risdate><volume>35</volume><issue>10</issue><spage>1077</spage><epage>1097</epage><pages>1077-1097</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>FUS is an RNA‐binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS‐containing aggregates are often associated with concomitant loss of nuclear FUS. Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell‐specific CRE‐mediated expression of wild‐type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. Synopsis Truncation of FUS, leading to cytoplasmic mislocalization, as well as loss of FUS leads to perinatal lethality in mice and alterations in RNA expression and splicing. However, only FUS cytoplasmic mislocalization triggers motor neuron degeneration through motor neuron intrinsic toxicity. Cytoplasmic FUS mislocalization leads to perinatal death and motor neuron degeneration in knockin mice. Complete loss of FUS leads to perinatal death in the absence of motor neuron degeneration. Cytoplasmic FUS mislocalization leads to alterations in gene expression and RNA splicing partially overlapping with complete loss of FUS. Selective rescue of cytoplasmic FUS mislocalization in motor neurons prevents motor neuron degeneration, but not perinatal death. Graphical Abstract Cytoplasmic accumulation of ALS‐associated FUS mutants not only leads to nuclear loss‐of‐function phenotypes, but also to motor neuron degeneration via toxic gain‐of‐function mechanisms.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>26951610</pmid><doi>10.15252/embj.201592559</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5401-0904</orcidid><orcidid>https://orcid.org/0000-0002-5724-2903</orcidid><orcidid>https://orcid.org/0000-0002-3058-8322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2016-05, Vol.35 (10), p.1077-1097
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4868956
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects Amyotrophic lateral sclerosis
Animals
Body weight
Brain
Brain - metabolism
Cellular biology
Cognitive science
Cytoplasm
Cytoplasm - metabolism
Dementia disorders
EMBO24
EMBO27
Exons
Female
frontotemporal dementia
FUS
Gene expression
Heart Conduction System
HEK293 Cells
Humans
Life Sciences
Male
Mice, Inbred C57BL
Mice, Transgenic
Middle Aged
Molecular Sequence Data
Mortality
motor neuron degeneration
Motor Neurons
Motor Neurons - metabolism
Mutation
Myotonic Dystrophy
NAV1.5 Voltage-Gated Sodium Channel
Neurons
Nucleotide Motifs
PY-NLS
RNA-Binding Protein FUS
RNA-Binding Protein FUS - genetics
RNA-Binding Protein FUS - metabolism
RNA-Binding Proteins
Rodents
Sodium Channels
Spinal Cord
Spinal Cord - metabolism
Xenopus
title Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toxic%20gain%20of%20function%20from%20mutant%20FUS%20protein%20is%20crucial%20to%20trigger%20cell%20autonomous%20motor%20neuron%20loss&rft.jtitle=The%20EMBO%20journal&rft.au=Scekic-Zahirovic,%20Jelena&rft.date=2016-05-17&rft.volume=35&rft.issue=10&rft.spage=1077&rft.epage=1097&rft.pages=1077-1097&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201592559&rft_dat=%3Cproquest_pubme%3E4057724491%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789134699&rft_id=info:pmid/26951610&rfr_iscdi=true