Mechanism of APC/CCDC20 activation by mitotic phosphorylation

Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-05, Vol.113 (19), p.E2570-E2578
Hauptverfasser: Qiao, Renping, Weissmann, Florian, Yamaguchi, Masaya, Brown, Nicholas G., VanderLinden, Ryan, Imre, Richard, Jarvis, Marc A., Brunner, Michael R., Davidson, Iain F., Litos, Gabriele, Haselbach, David, Mechtler, Karl, Stark, Holger, Schulman, Brenda A., Peters, Jan-Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E2578
container_issue 19
container_start_page E2570
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Qiao, Renping
Weissmann, Florian
Yamaguchi, Masaya
Brown, Nicholas G.
VanderLinden, Ryan
Imre, Richard
Jarvis, Marc A.
Brunner, Michael R.
Davidson, Iain F.
Litos, Gabriele
Haselbach, David
Mechtler, Karl
Stark, Holger
Schulman, Brenda A.
Peters, Jan-Michael
description Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.
doi_str_mv 10.1073/pnas.1604929113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4868491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26469593</jstor_id><sourcerecordid>26469593</sourcerecordid><originalsourceid>FETCH-LOGICAL-j218t-40d1940a76452c729ef426042ff2ef749f7dd0224b2ba93cf4794c81f1f608113</originalsourceid><addsrcrecordid>eNpVkMlOwzAQhi0EoqVw5gTKC6QdOxMvB5CqsEpFcIBz5DgxddUsik2lvj2Bsh5Gc_j--TQzhJxSmFIQyaxrtJ9SDqiYojTZI2MKisYcFeyTMQATsUSGI3Lk_QoAVCrhkIyYoBRTCmNy8VCZpW6cr6PWRvOnbJZlVxmDSJvgNjq4tomKbVS70AZnom7Z-qH67foTHZMDq9e-OvnqE_Jyc_2c3cWLx9v7bL6IV4zKECOUVCFowTFlRjBVWWTD0sxaVlmByoqyBMawYIVWibEoFBpJLbUc5HDXhFzuvN1bUVelqZrQ63Xe9a7W_TZvtcv_k8Yt89d2k6PkEtWH4Pyv4Gfy-xFD4GwXWPnQ9r-cI1epSpJ3djZpog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanism of APC/CCDC20 activation by mitotic phosphorylation</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Qiao, Renping ; Weissmann, Florian ; Yamaguchi, Masaya ; Brown, Nicholas G. ; VanderLinden, Ryan ; Imre, Richard ; Jarvis, Marc A. ; Brunner, Michael R. ; Davidson, Iain F. ; Litos, Gabriele ; Haselbach, David ; Mechtler, Karl ; Stark, Holger ; Schulman, Brenda A. ; Peters, Jan-Michael</creator><creatorcontrib>Qiao, Renping ; Weissmann, Florian ; Yamaguchi, Masaya ; Brown, Nicholas G. ; VanderLinden, Ryan ; Imre, Richard ; Jarvis, Marc A. ; Brunner, Michael R. ; Davidson, Iain F. ; Litos, Gabriele ; Haselbach, David ; Mechtler, Karl ; Stark, Holger ; Schulman, Brenda A. ; Peters, Jan-Michael</creatorcontrib><description>Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1604929113</identifier><identifier>PMID: 27114510</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anaphase-Promoting Complex-Cyclosome - chemistry ; Anaphase-Promoting Complex-Cyclosome - metabolism ; Binding Sites ; Biological Sciences ; Cdc20 Proteins - chemistry ; Cdc20 Proteins - metabolism ; Enzyme Activation ; HeLa Cells ; Humans ; Mitosis - physiology ; Mutagenesis, Site-Directed - methods ; Phosphorylation ; PNAS Plus ; Protein Binding ; Transfection - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-05, Vol.113 (19), p.E2570-E2578</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26469593$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26469593$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27114510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Renping</creatorcontrib><creatorcontrib>Weissmann, Florian</creatorcontrib><creatorcontrib>Yamaguchi, Masaya</creatorcontrib><creatorcontrib>Brown, Nicholas G.</creatorcontrib><creatorcontrib>VanderLinden, Ryan</creatorcontrib><creatorcontrib>Imre, Richard</creatorcontrib><creatorcontrib>Jarvis, Marc A.</creatorcontrib><creatorcontrib>Brunner, Michael R.</creatorcontrib><creatorcontrib>Davidson, Iain F.</creatorcontrib><creatorcontrib>Litos, Gabriele</creatorcontrib><creatorcontrib>Haselbach, David</creatorcontrib><creatorcontrib>Mechtler, Karl</creatorcontrib><creatorcontrib>Stark, Holger</creatorcontrib><creatorcontrib>Schulman, Brenda A.</creatorcontrib><creatorcontrib>Peters, Jan-Michael</creatorcontrib><title>Mechanism of APC/CCDC20 activation by mitotic phosphorylation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.</description><subject>Anaphase-Promoting Complex-Cyclosome - chemistry</subject><subject>Anaphase-Promoting Complex-Cyclosome - metabolism</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Cdc20 Proteins - chemistry</subject><subject>Cdc20 Proteins - metabolism</subject><subject>Enzyme Activation</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Mitosis - physiology</subject><subject>Mutagenesis, Site-Directed - methods</subject><subject>Phosphorylation</subject><subject>PNAS Plus</subject><subject>Protein Binding</subject><subject>Transfection - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMlOwzAQhi0EoqVw5gTKC6QdOxMvB5CqsEpFcIBz5DgxddUsik2lvj2Bsh5Gc_j--TQzhJxSmFIQyaxrtJ9SDqiYojTZI2MKisYcFeyTMQATsUSGI3Lk_QoAVCrhkIyYoBRTCmNy8VCZpW6cr6PWRvOnbJZlVxmDSJvgNjq4tomKbVS70AZnom7Z-qH67foTHZMDq9e-OvnqE_Jyc_2c3cWLx9v7bL6IV4zKECOUVCFowTFlRjBVWWTD0sxaVlmByoqyBMawYIVWibEoFBpJLbUc5HDXhFzuvN1bUVelqZrQ63Xe9a7W_TZvtcv_k8Yt89d2k6PkEtWH4Pyv4Gfy-xFD4GwXWPnQ9r-cI1epSpJ3djZpog</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Qiao, Renping</creator><creator>Weissmann, Florian</creator><creator>Yamaguchi, Masaya</creator><creator>Brown, Nicholas G.</creator><creator>VanderLinden, Ryan</creator><creator>Imre, Richard</creator><creator>Jarvis, Marc A.</creator><creator>Brunner, Michael R.</creator><creator>Davidson, Iain F.</creator><creator>Litos, Gabriele</creator><creator>Haselbach, David</creator><creator>Mechtler, Karl</creator><creator>Stark, Holger</creator><creator>Schulman, Brenda A.</creator><creator>Peters, Jan-Michael</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20160510</creationdate><title>Mechanism of APC/CCDC20 activation by mitotic phosphorylation</title><author>Qiao, Renping ; Weissmann, Florian ; Yamaguchi, Masaya ; Brown, Nicholas G. ; VanderLinden, Ryan ; Imre, Richard ; Jarvis, Marc A. ; Brunner, Michael R. ; Davidson, Iain F. ; Litos, Gabriele ; Haselbach, David ; Mechtler, Karl ; Stark, Holger ; Schulman, Brenda A. ; Peters, Jan-Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j218t-40d1940a76452c729ef426042ff2ef749f7dd0224b2ba93cf4794c81f1f608113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anaphase-Promoting Complex-Cyclosome - chemistry</topic><topic>Anaphase-Promoting Complex-Cyclosome - metabolism</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Cdc20 Proteins - chemistry</topic><topic>Cdc20 Proteins - metabolism</topic><topic>Enzyme Activation</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Mitosis - physiology</topic><topic>Mutagenesis, Site-Directed - methods</topic><topic>Phosphorylation</topic><topic>PNAS Plus</topic><topic>Protein Binding</topic><topic>Transfection - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Renping</creatorcontrib><creatorcontrib>Weissmann, Florian</creatorcontrib><creatorcontrib>Yamaguchi, Masaya</creatorcontrib><creatorcontrib>Brown, Nicholas G.</creatorcontrib><creatorcontrib>VanderLinden, Ryan</creatorcontrib><creatorcontrib>Imre, Richard</creatorcontrib><creatorcontrib>Jarvis, Marc A.</creatorcontrib><creatorcontrib>Brunner, Michael R.</creatorcontrib><creatorcontrib>Davidson, Iain F.</creatorcontrib><creatorcontrib>Litos, Gabriele</creatorcontrib><creatorcontrib>Haselbach, David</creatorcontrib><creatorcontrib>Mechtler, Karl</creatorcontrib><creatorcontrib>Stark, Holger</creatorcontrib><creatorcontrib>Schulman, Brenda A.</creatorcontrib><creatorcontrib>Peters, Jan-Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Renping</au><au>Weissmann, Florian</au><au>Yamaguchi, Masaya</au><au>Brown, Nicholas G.</au><au>VanderLinden, Ryan</au><au>Imre, Richard</au><au>Jarvis, Marc A.</au><au>Brunner, Michael R.</au><au>Davidson, Iain F.</au><au>Litos, Gabriele</au><au>Haselbach, David</au><au>Mechtler, Karl</au><au>Stark, Holger</au><au>Schulman, Brenda A.</au><au>Peters, Jan-Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of APC/CCDC20 activation by mitotic phosphorylation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>113</volume><issue>19</issue><spage>E2570</spage><epage>E2578</epage><pages>E2570-E2578</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27114510</pmid><doi>10.1073/pnas.1604929113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-05, Vol.113 (19), p.E2570-E2578
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4868491
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anaphase-Promoting Complex-Cyclosome - chemistry
Anaphase-Promoting Complex-Cyclosome - metabolism
Binding Sites
Biological Sciences
Cdc20 Proteins - chemistry
Cdc20 Proteins - metabolism
Enzyme Activation
HeLa Cells
Humans
Mitosis - physiology
Mutagenesis, Site-Directed - methods
Phosphorylation
PNAS Plus
Protein Binding
Transfection - methods
title Mechanism of APC/CCDC20 activation by mitotic phosphorylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20APC/CCDC20%20activation%20by%20mitotic%20phosphorylation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Qiao,%20Renping&rft.date=2016-05-10&rft.volume=113&rft.issue=19&rft.spage=E2570&rft.epage=E2578&rft.pages=E2570-E2578&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1604929113&rft_dat=%3Cjstor_pubme%3E26469593%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27114510&rft_jstor_id=26469593&rfr_iscdi=true