Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations
The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent develo...
Gespeichert in:
Veröffentlicht in: | Journal of nanobiotechnology 2016-05, Vol.14 (1), p.37-37, Article 37 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Journal of nanobiotechnology |
container_volume | 14 |
creator | Marcus, Michal Karni, Moshe Baranes, Koby Levy, Itay Alon, Noa Margel, Shlomo Shefi, Orit |
description | The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells.
We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration.
Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations. |
doi_str_mv | 10.1186/s12951-016-0190-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4867999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A452412655</galeid><sourcerecordid>A452412655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-b0b667480283ca4aa694142a771fa18da9d90aff008a3ef63fea6a5085697a013</originalsourceid><addsrcrecordid>eNptkltrFTEUhYMotlZ_gC8S8EUfpiaZXH0QSvFyoCB4eY77zCTH1JlkTGak_fdmOLX2iISQTfKttclmIfSUklNKtXxVKDOCNoTKug1pyD10TLlSTUuFuH-nPkKPSrkkhDHO-EN0xBRVxrD2GH3b5BRxugq9wxFimiDPoRtcwT5lHN1Sn2HAnRsGDNM0hA7mkGJ5jZdphh8Ol3nprzHEHo-wi66KaxHDtAx78DF64GEo7snNeYK-vnv75fxDc_Hx_eb87KLpBNNzsyVbKRXXhOm2Aw4gDaecgVLUA9U9mN4Q8J4QDa3zsvUOJAiihTQKCG1P0Ju977RsR9d3Ls4ZBjvlMEK-tgmCPXyJ4bvdpV-Wa1lnYarBixuDnH4ursx2DGX9N0SXlmKp0oYboc3a6_k_6GVacp3TShnFBWeC_6V2MDgbok-1b7ea2jMuGKdMClGp0_9QdfVuDF2Kzod6fyB4eSCozOyu5h0spdjN50-HLN2zXU6lZOdv50GJXSNk9xGyNUJ2jZAlVfPs7iBvFX8y0_4G63_A_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797454254</pqid></control><display><type>article</type><title>Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Springer Nature - Complete Springer Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Marcus, Michal ; Karni, Moshe ; Baranes, Koby ; Levy, Itay ; Alon, Noa ; Margel, Shlomo ; Shefi, Orit</creator><creatorcontrib>Marcus, Michal ; Karni, Moshe ; Baranes, Koby ; Levy, Itay ; Alon, Noa ; Margel, Shlomo ; Shefi, Orit</creatorcontrib><description>The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells.
We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration.
Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations.</description><identifier>ISSN: 1477-3155</identifier><identifier>EISSN: 1477-3155</identifier><identifier>DOI: 10.1186/s12951-016-0190-0</identifier><identifier>PMID: 27179923</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animals ; Cell Movement - drug effects ; Cell Survival - drug effects ; Ferric Compounds - analysis ; Ferric Compounds - pharmacokinetics ; Ferric Compounds - therapeutic use ; Ferric Compounds - toxicity ; Iron oxides ; Magnetic Fields ; Magnetics - methods ; Magnetite Nanoparticles - analysis ; Magnetite Nanoparticles - therapeutic use ; Magnetite Nanoparticles - toxicity ; Micromanipulation - methods ; Nanoparticles ; Nerve Regeneration - drug effects ; Neurons ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; PC12 Cells ; Physiological aspects ; Rats</subject><ispartof>Journal of nanobiotechnology, 2016-05, Vol.14 (1), p.37-37, Article 37</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>The Author(s). 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-b0b667480283ca4aa694142a771fa18da9d90aff008a3ef63fea6a5085697a013</citedby><cites>FETCH-LOGICAL-c528t-b0b667480283ca4aa694142a771fa18da9d90aff008a3ef63fea6a5085697a013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867999/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867999/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27179923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marcus, Michal</creatorcontrib><creatorcontrib>Karni, Moshe</creatorcontrib><creatorcontrib>Baranes, Koby</creatorcontrib><creatorcontrib>Levy, Itay</creatorcontrib><creatorcontrib>Alon, Noa</creatorcontrib><creatorcontrib>Margel, Shlomo</creatorcontrib><creatorcontrib>Shefi, Orit</creatorcontrib><title>Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations</title><title>Journal of nanobiotechnology</title><addtitle>J Nanobiotechnology</addtitle><description>The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells.
We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration.
Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations.</description><subject>Animals</subject><subject>Cell Movement - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Ferric Compounds - analysis</subject><subject>Ferric Compounds - pharmacokinetics</subject><subject>Ferric Compounds - therapeutic use</subject><subject>Ferric Compounds - toxicity</subject><subject>Iron oxides</subject><subject>Magnetic Fields</subject><subject>Magnetics - methods</subject><subject>Magnetite Nanoparticles - analysis</subject><subject>Magnetite Nanoparticles - therapeutic use</subject><subject>Magnetite Nanoparticles - toxicity</subject><subject>Micromanipulation - methods</subject><subject>Nanoparticles</subject><subject>Nerve Regeneration - drug effects</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>PC12 Cells</subject><subject>Physiological aspects</subject><subject>Rats</subject><issn>1477-3155</issn><issn>1477-3155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkltrFTEUhYMotlZ_gC8S8EUfpiaZXH0QSvFyoCB4eY77zCTH1JlkTGak_fdmOLX2iISQTfKttclmIfSUklNKtXxVKDOCNoTKug1pyD10TLlSTUuFuH-nPkKPSrkkhDHO-EN0xBRVxrD2GH3b5BRxugq9wxFimiDPoRtcwT5lHN1Sn2HAnRsGDNM0hA7mkGJ5jZdphh8Ol3nprzHEHo-wi66KaxHDtAx78DF64GEo7snNeYK-vnv75fxDc_Hx_eb87KLpBNNzsyVbKRXXhOm2Aw4gDaecgVLUA9U9mN4Q8J4QDa3zsvUOJAiihTQKCG1P0Ju977RsR9d3Ls4ZBjvlMEK-tgmCPXyJ4bvdpV-Wa1lnYarBixuDnH4ursx2DGX9N0SXlmKp0oYboc3a6_k_6GVacp3TShnFBWeC_6V2MDgbok-1b7ea2jMuGKdMClGp0_9QdfVuDF2Kzod6fyB4eSCozOyu5h0spdjN50-HLN2zXU6lZOdv50GJXSNk9xGyNUJ2jZAlVfPs7iBvFX8y0_4G63_A_A</recordid><startdate>20160514</startdate><enddate>20160514</enddate><creator>Marcus, Michal</creator><creator>Karni, Moshe</creator><creator>Baranes, Koby</creator><creator>Levy, Itay</creator><creator>Alon, Noa</creator><creator>Margel, Shlomo</creator><creator>Shefi, Orit</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160514</creationdate><title>Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations</title><author>Marcus, Michal ; Karni, Moshe ; Baranes, Koby ; Levy, Itay ; Alon, Noa ; Margel, Shlomo ; Shefi, Orit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-b0b667480283ca4aa694142a771fa18da9d90aff008a3ef63fea6a5085697a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cell Movement - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Ferric Compounds - analysis</topic><topic>Ferric Compounds - pharmacokinetics</topic><topic>Ferric Compounds - therapeutic use</topic><topic>Ferric Compounds - toxicity</topic><topic>Iron oxides</topic><topic>Magnetic Fields</topic><topic>Magnetics - methods</topic><topic>Magnetite Nanoparticles - analysis</topic><topic>Magnetite Nanoparticles - therapeutic use</topic><topic>Magnetite Nanoparticles - toxicity</topic><topic>Micromanipulation - methods</topic><topic>Nanoparticles</topic><topic>Nerve Regeneration - drug effects</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>PC12 Cells</topic><topic>Physiological aspects</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcus, Michal</creatorcontrib><creatorcontrib>Karni, Moshe</creatorcontrib><creatorcontrib>Baranes, Koby</creatorcontrib><creatorcontrib>Levy, Itay</creatorcontrib><creatorcontrib>Alon, Noa</creatorcontrib><creatorcontrib>Margel, Shlomo</creatorcontrib><creatorcontrib>Shefi, Orit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcus, Michal</au><au>Karni, Moshe</au><au>Baranes, Koby</au><au>Levy, Itay</au><au>Alon, Noa</au><au>Margel, Shlomo</au><au>Shefi, Orit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations</atitle><jtitle>Journal of nanobiotechnology</jtitle><addtitle>J Nanobiotechnology</addtitle><date>2016-05-14</date><risdate>2016</risdate><volume>14</volume><issue>1</issue><spage>37</spage><epage>37</epage><pages>37-37</pages><artnum>37</artnum><issn>1477-3155</issn><eissn>1477-3155</eissn><abstract>The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells.
We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration.
Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27179923</pmid><doi>10.1186/s12951-016-0190-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-3155 |
ispartof | Journal of nanobiotechnology, 2016-05, Vol.14 (1), p.37-37, Article 37 |
issn | 1477-3155 1477-3155 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4867999 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Springer Nature - Complete Springer Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Cell Movement - drug effects Cell Survival - drug effects Ferric Compounds - analysis Ferric Compounds - pharmacokinetics Ferric Compounds - therapeutic use Ferric Compounds - toxicity Iron oxides Magnetic Fields Magnetics - methods Magnetite Nanoparticles - analysis Magnetite Nanoparticles - therapeutic use Magnetite Nanoparticles - toxicity Micromanipulation - methods Nanoparticles Nerve Regeneration - drug effects Neurons Neurons - cytology Neurons - drug effects Neurons - physiology PC12 Cells Physiological aspects Rats |
title | Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20oxide%20nanoparticles%20for%20neuronal%20cell%20applications:%20uptake%20study%20and%20magnetic%20manipulations&rft.jtitle=Journal%20of%20nanobiotechnology&rft.au=Marcus,%20Michal&rft.date=2016-05-14&rft.volume=14&rft.issue=1&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.artnum=37&rft.issn=1477-3155&rft.eissn=1477-3155&rft_id=info:doi/10.1186/s12951-016-0190-0&rft_dat=%3Cgale_pubme%3EA452412655%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797454254&rft_id=info:pmid/27179923&rft_galeid=A452412655&rfr_iscdi=true |