Nano-Bioelectronics

Nano-bioelectronics represents a rapidly expanding interdisciplinary field that combines nanomaterials with biology and electronics and, in so doing, offers the potential to overcome existing challenges in bioelectronics. In particular, shrinking electronic transducer dimensions to the nanoscale and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2016-01, Vol.116 (1), p.215-257
Hauptverfasser: Zhang, Anqi, Lieber, Charles M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 1
container_start_page 215
container_title Chemical reviews
container_volume 116
creator Zhang, Anqi
Lieber, Charles M
description Nano-bioelectronics represents a rapidly expanding interdisciplinary field that combines nanomaterials with biology and electronics and, in so doing, offers the potential to overcome existing challenges in bioelectronics. In particular, shrinking electronic transducer dimensions to the nanoscale and making their properties appear more biological can yield significant improvements in the sensitivity and biocompatibility and thereby open up opportunities in fundamental biology and healthcare. This review emphasizes recent advances in nano-bioelectronics enabled with semiconductor nanostructures, including silicon nanowires, carbon nanotubes, and graphene. First, the synthesis and electrical properties of these nanomaterials are discussed in the context of bioelectronics. Second, affinity-based nano-bioelectronic sensors for highly sensitive analysis of biomolecules are reviewed. In these studies, semiconductor nanostructures as transistor-based biosensors are discussed from fundamental device behavior through sensing applications and future challenges. Third, the complex interface between nanoelectronics and living biological systems, from single cells to live animals, is reviewed. This discussion focuses on representative advances in electrophysiology enabled using semiconductor nanostructures and their nanoelectronic devices for cellular measurements through emerging work where arrays of nanoelectronic devices are incorporated within three-dimensional cell networks that define synthetic and natural tissues. Last, some challenges and exciting future opportunities are discussed.
doi_str_mv 10.1021/acs.chemrev.5b00608
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4867216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2053873962</sourcerecordid><originalsourceid>FETCH-LOGICAL-a506t-b5ad4765b7b367fa7d6fc88b5a08d6638575163ae3094e495fc52b0744ed7f6b3</originalsourceid><addsrcrecordid>eNp9kLtPwzAQxi0EoqUwMSKxsLCkvfidBQkqXlIFC8yW4zg0VRoXO6nEf4-rhvIYmE53_n2f7z6EzlIYp4DTiTZhbOZ26e16zHIADnIPDVOGIeEyg300BIAswZyzAToKYRFbxrA4RIM4y1JO5RCdPunGJTeVs7U1rXdNZcIxOih1HexJX0fo9e72ZfqQzJ7vH6fXs0Qz4G2SM11QwVkucsJFqUXBSyNlHIMsOCeSCZZyoi2BjFqasdIwnIOg1Bai5DkZoaut76rLl7Ywtmm9rtXKV0vtP5TTlfr90lRz9ebWikoucLQeocvewLv3zoZWLatgbF3rxrouKAyMSEEyjiN68QdduM438TyVSgqZ5HHbSJEtZbwLwdtyt0wKahO6iqGrPnTVhx5V5z_v2Gm-Uo7AZAts1N___mP5CQBeju0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1840986575</pqid></control><display><type>article</type><title>Nano-Bioelectronics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Anqi ; Lieber, Charles M</creator><creatorcontrib>Zhang, Anqi ; Lieber, Charles M</creatorcontrib><description>Nano-bioelectronics represents a rapidly expanding interdisciplinary field that combines nanomaterials with biology and electronics and, in so doing, offers the potential to overcome existing challenges in bioelectronics. In particular, shrinking electronic transducer dimensions to the nanoscale and making their properties appear more biological can yield significant improvements in the sensitivity and biocompatibility and thereby open up opportunities in fundamental biology and healthcare. This review emphasizes recent advances in nano-bioelectronics enabled with semiconductor nanostructures, including silicon nanowires, carbon nanotubes, and graphene. First, the synthesis and electrical properties of these nanomaterials are discussed in the context of bioelectronics. Second, affinity-based nano-bioelectronic sensors for highly sensitive analysis of biomolecules are reviewed. In these studies, semiconductor nanostructures as transistor-based biosensors are discussed from fundamental device behavior through sensing applications and future challenges. Third, the complex interface between nanoelectronics and living biological systems, from single cells to live animals, is reviewed. This discussion focuses on representative advances in electrophysiology enabled using semiconductor nanostructures and their nanoelectronic devices for cellular measurements through emerging work where arrays of nanoelectronic devices are incorporated within three-dimensional cell networks that define synthetic and natural tissues. Last, some challenges and exciting future opportunities are discussed.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.5b00608</identifier><identifier>PMID: 26691648</identifier><identifier>CODEN: CHREAY</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; biochemical compounds ; biocompatibility ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; carbon nanotubes ; Chemical synthesis ; Electric properties ; electrical properties ; electronics ; Electronics - instrumentation ; Electronics - methods ; electrophysiology ; Equipment Design ; graphene ; health services ; Humans ; Microelectronics ; Nanomaterials ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - instrumentation ; Nanotechnology - methods ; nanowires ; Semiconductors ; silicon ; tissues</subject><ispartof>Chemical reviews, 2016-01, Vol.116 (1), p.215-257</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 13, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a506t-b5ad4765b7b367fa7d6fc88b5a08d6638575163ae3094e495fc52b0744ed7f6b3</citedby><cites>FETCH-LOGICAL-a506t-b5ad4765b7b367fa7d6fc88b5a08d6638575163ae3094e495fc52b0744ed7f6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.5b00608$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.5b00608$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26691648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Anqi</creatorcontrib><creatorcontrib>Lieber, Charles M</creatorcontrib><title>Nano-Bioelectronics</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Nano-bioelectronics represents a rapidly expanding interdisciplinary field that combines nanomaterials with biology and electronics and, in so doing, offers the potential to overcome existing challenges in bioelectronics. In particular, shrinking electronic transducer dimensions to the nanoscale and making their properties appear more biological can yield significant improvements in the sensitivity and biocompatibility and thereby open up opportunities in fundamental biology and healthcare. This review emphasizes recent advances in nano-bioelectronics enabled with semiconductor nanostructures, including silicon nanowires, carbon nanotubes, and graphene. First, the synthesis and electrical properties of these nanomaterials are discussed in the context of bioelectronics. Second, affinity-based nano-bioelectronic sensors for highly sensitive analysis of biomolecules are reviewed. In these studies, semiconductor nanostructures as transistor-based biosensors are discussed from fundamental device behavior through sensing applications and future challenges. Third, the complex interface between nanoelectronics and living biological systems, from single cells to live animals, is reviewed. This discussion focuses on representative advances in electrophysiology enabled using semiconductor nanostructures and their nanoelectronic devices for cellular measurements through emerging work where arrays of nanoelectronic devices are incorporated within three-dimensional cell networks that define synthetic and natural tissues. Last, some challenges and exciting future opportunities are discussed.</description><subject>Animals</subject><subject>biochemical compounds</subject><subject>biocompatibility</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>carbon nanotubes</subject><subject>Chemical synthesis</subject><subject>Electric properties</subject><subject>electrical properties</subject><subject>electronics</subject><subject>Electronics - instrumentation</subject><subject>Electronics - methods</subject><subject>electrophysiology</subject><subject>Equipment Design</subject><subject>graphene</subject><subject>health services</subject><subject>Humans</subject><subject>Microelectronics</subject><subject>Nanomaterials</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>nanowires</subject><subject>Semiconductors</subject><subject>silicon</subject><subject>tissues</subject><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtPwzAQxi0EoqUwMSKxsLCkvfidBQkqXlIFC8yW4zg0VRoXO6nEf4-rhvIYmE53_n2f7z6EzlIYp4DTiTZhbOZ26e16zHIADnIPDVOGIeEyg300BIAswZyzAToKYRFbxrA4RIM4y1JO5RCdPunGJTeVs7U1rXdNZcIxOih1HexJX0fo9e72ZfqQzJ7vH6fXs0Qz4G2SM11QwVkucsJFqUXBSyNlHIMsOCeSCZZyoi2BjFqasdIwnIOg1Bai5DkZoaut76rLl7Ywtmm9rtXKV0vtP5TTlfr90lRz9ebWikoucLQeocvewLv3zoZWLatgbF3rxrouKAyMSEEyjiN68QdduM438TyVSgqZ5HHbSJEtZbwLwdtyt0wKahO6iqGrPnTVhx5V5z_v2Gm-Uo7AZAts1N___mP5CQBeju0</recordid><startdate>20160113</startdate><enddate>20160113</enddate><creator>Zhang, Anqi</creator><creator>Lieber, Charles M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160113</creationdate><title>Nano-Bioelectronics</title><author>Zhang, Anqi ; Lieber, Charles M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a506t-b5ad4765b7b367fa7d6fc88b5a08d6638575163ae3094e495fc52b0744ed7f6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>biochemical compounds</topic><topic>biocompatibility</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>carbon nanotubes</topic><topic>Chemical synthesis</topic><topic>Electric properties</topic><topic>electrical properties</topic><topic>electronics</topic><topic>Electronics - instrumentation</topic><topic>Electronics - methods</topic><topic>electrophysiology</topic><topic>Equipment Design</topic><topic>graphene</topic><topic>health services</topic><topic>Humans</topic><topic>Microelectronics</topic><topic>Nanomaterials</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>nanowires</topic><topic>Semiconductors</topic><topic>silicon</topic><topic>tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Anqi</creatorcontrib><creatorcontrib>Lieber, Charles M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Anqi</au><au>Lieber, Charles M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-Bioelectronics</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2016-01-13</date><risdate>2016</risdate><volume>116</volume><issue>1</issue><spage>215</spage><epage>257</epage><pages>215-257</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><coden>CHREAY</coden><abstract>Nano-bioelectronics represents a rapidly expanding interdisciplinary field that combines nanomaterials with biology and electronics and, in so doing, offers the potential to overcome existing challenges in bioelectronics. In particular, shrinking electronic transducer dimensions to the nanoscale and making their properties appear more biological can yield significant improvements in the sensitivity and biocompatibility and thereby open up opportunities in fundamental biology and healthcare. This review emphasizes recent advances in nano-bioelectronics enabled with semiconductor nanostructures, including silicon nanowires, carbon nanotubes, and graphene. First, the synthesis and electrical properties of these nanomaterials are discussed in the context of bioelectronics. Second, affinity-based nano-bioelectronic sensors for highly sensitive analysis of biomolecules are reviewed. In these studies, semiconductor nanostructures as transistor-based biosensors are discussed from fundamental device behavior through sensing applications and future challenges. Third, the complex interface between nanoelectronics and living biological systems, from single cells to live animals, is reviewed. This discussion focuses on representative advances in electrophysiology enabled using semiconductor nanostructures and their nanoelectronic devices for cellular measurements through emerging work where arrays of nanoelectronic devices are incorporated within three-dimensional cell networks that define synthetic and natural tissues. Last, some challenges and exciting future opportunities are discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26691648</pmid><doi>10.1021/acs.chemrev.5b00608</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2016-01, Vol.116 (1), p.215-257
issn 0009-2665
1520-6890
1520-6890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4867216
source MEDLINE; ACS Publications
subjects Animals
biochemical compounds
biocompatibility
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensors
carbon nanotubes
Chemical synthesis
Electric properties
electrical properties
electronics
Electronics - instrumentation
Electronics - methods
electrophysiology
Equipment Design
graphene
health services
Humans
Microelectronics
Nanomaterials
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - instrumentation
Nanotechnology - methods
nanowires
Semiconductors
silicon
tissues
title Nano-Bioelectronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-Bioelectronics&rft.jtitle=Chemical%20reviews&rft.au=Zhang,%20Anqi&rft.date=2016-01-13&rft.volume=116&rft.issue=1&rft.spage=215&rft.epage=257&rft.pages=215-257&rft.issn=0009-2665&rft.eissn=1520-6890&rft.coden=CHREAY&rft_id=info:doi/10.1021/acs.chemrev.5b00608&rft_dat=%3Cproquest_pubme%3E2053873962%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1840986575&rft_id=info:pmid/26691648&rfr_iscdi=true