An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications

Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2016-05, Vol.116 (9), p.4983-5013
Hauptverfasser: Lemkul, Justin A, Huang, Jing, Roux, Benoît, MacKerell, Alexander D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5013
container_issue 9
container_start_page 4983
container_title Chemical reviews
container_volume 116
creator Lemkul, Justin A
Huang, Jing
Roux, Benoît
MacKerell, Alexander D
description Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena.
doi_str_mv 10.1021/acs.chemrev.5b00505
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4865892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4254915781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a539t-bb670517c1a669c9313aad3f0eb7c3560d088009a72cf56fa38ca40e835b43da3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhFyAhS2zYZOrH2ElYIA3TliIVFSFYWzfODePKiVM7M1LZ9K_XwwzlsWBjy77fPb7Hh5CXnM05E_wEbJrbNfYRt3PVMKaYekRmXAlW6Kpmj8mMMVYXQmt1RJ6ldJ2PSonyKTkSuuJKMzEjd8uBnvWji86Cp5-Dh-h-QOORnodo8-rQt_Q9JGxpGOi0RrrykNJP_DRuWqRXyTrvYQqRfgot-rf0FLfow9jjMNELl3LllsLQ0i9od1fLcfS5f3JhSM_Jkw58wheH_Zh8Oz_7urooLq8-fFwtLwtQsp6KptElU7y0HLSubS25BGhlx7AprcxWWlZV2S2UwnZKdyArCwuGlVTNQrYgj8m7ve64aXpsd3NE8GaMrod4awI483dlcGvzPWzNotKqqkUWeHMQiOFmg2kyvUsWs_EBwyYZXuY_l5Woy4y-_ge9Dps4ZHuGVwsuS8aEypTcUzaGlCJ2D8NwZnYBmxywOQRsDgHnrld_-njo-ZVoBk72wK7797v_kbwHReq2DQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1841370025</pqid></control><display><type>article</type><title>An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications</title><source>MEDLINE</source><source>ACS Publications</source><creator>Lemkul, Justin A ; Huang, Jing ; Roux, Benoît ; MacKerell, Alexander D</creator><creatorcontrib>Lemkul, Justin A ; Huang, Jing ; Roux, Benoît ; MacKerell, Alexander D</creatorcontrib><description>Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.5b00505</identifier><identifier>PMID: 26815602</identifier><identifier>CODEN: CHREAY</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Atoms &amp; subatomic particles ; Carbohydrates ; Carbohydrates - chemistry ; Charged particles ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Lipids ; Lipids - chemistry ; Molecular Dynamics Simulation ; Proteins ; Proteins - chemistry ; Review ; Simulation</subject><ispartof>Chemical reviews, 2016-05, Vol.116 (9), p.4983-5013</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society May 11, 2016</rights><rights>Copyright © 2016 American Chemical Society 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a539t-bb670517c1a669c9313aad3f0eb7c3560d088009a72cf56fa38ca40e835b43da3</citedby><cites>FETCH-LOGICAL-a539t-bb670517c1a669c9313aad3f0eb7c3560d088009a72cf56fa38ca40e835b43da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.5b00505$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.5b00505$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26815602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lemkul, Justin A</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Roux, Benoît</creatorcontrib><creatorcontrib>MacKerell, Alexander D</creatorcontrib><title>An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena.</description><subject>Atoms &amp; subatomic particles</subject><subject>Carbohydrates</subject><subject>Carbohydrates - chemistry</subject><subject>Charged particles</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Review</subject><subject>Simulation</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EokPhFyAhS2zYZOrH2ElYIA3TliIVFSFYWzfODePKiVM7M1LZ9K_XwwzlsWBjy77fPb7Hh5CXnM05E_wEbJrbNfYRt3PVMKaYekRmXAlW6Kpmj8mMMVYXQmt1RJ6ldJ2PSonyKTkSuuJKMzEjd8uBnvWji86Cp5-Dh-h-QOORnodo8-rQt_Q9JGxpGOi0RrrykNJP_DRuWqRXyTrvYQqRfgot-rf0FLfow9jjMNELl3LllsLQ0i9od1fLcfS5f3JhSM_Jkw58wheH_Zh8Oz_7urooLq8-fFwtLwtQsp6KptElU7y0HLSubS25BGhlx7AprcxWWlZV2S2UwnZKdyArCwuGlVTNQrYgj8m7ve64aXpsd3NE8GaMrod4awI483dlcGvzPWzNotKqqkUWeHMQiOFmg2kyvUsWs_EBwyYZXuY_l5Woy4y-_ge9Dps4ZHuGVwsuS8aEypTcUzaGlCJ2D8NwZnYBmxywOQRsDgHnrld_-njo-ZVoBk72wK7797v_kbwHReq2DQ</recordid><startdate>20160511</startdate><enddate>20160511</enddate><creator>Lemkul, Justin A</creator><creator>Huang, Jing</creator><creator>Roux, Benoît</creator><creator>MacKerell, Alexander D</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160511</creationdate><title>An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications</title><author>Lemkul, Justin A ; Huang, Jing ; Roux, Benoît ; MacKerell, Alexander D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a539t-bb670517c1a669c9313aad3f0eb7c3560d088009a72cf56fa38ca40e835b43da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Carbohydrates</topic><topic>Carbohydrates - chemistry</topic><topic>Charged particles</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Review</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemkul, Justin A</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Roux, Benoît</creatorcontrib><creatorcontrib>MacKerell, Alexander D</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemkul, Justin A</au><au>Huang, Jing</au><au>Roux, Benoît</au><au>MacKerell, Alexander D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2016-05-11</date><risdate>2016</risdate><volume>116</volume><issue>9</issue><spage>4983</spage><epage>5013</epage><pages>4983-5013</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><coden>CHREAY</coden><abstract>Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26815602</pmid><doi>10.1021/acs.chemrev.5b00505</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2016-05, Vol.116 (9), p.4983-5013
issn 0009-2665
1520-6890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4865892
source MEDLINE; ACS Publications
subjects Atoms & subatomic particles
Carbohydrates
Carbohydrates - chemistry
Charged particles
Deoxyribonucleic acid
DNA
DNA - chemistry
Lipids
Lipids - chemistry
Molecular Dynamics Simulation
Proteins
Proteins - chemistry
Review
Simulation
title An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Empirical%20Polarizable%20Force%20Field%20Based%20on%20the%20Classical%20Drude%20Oscillator%20Model:%20Development%20History%20and%20Recent%20Applications&rft.jtitle=Chemical%20reviews&rft.au=Lemkul,%20Justin%20A&rft.date=2016-05-11&rft.volume=116&rft.issue=9&rft.spage=4983&rft.epage=5013&rft.pages=4983-5013&rft.issn=0009-2665&rft.eissn=1520-6890&rft.coden=CHREAY&rft_id=info:doi/10.1021/acs.chemrev.5b00505&rft_dat=%3Cproquest_pubme%3E4254915781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1841370025&rft_id=info:pmid/26815602&rfr_iscdi=true