Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation

Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2016-05, Vol.12 (5), p.2459-2470
Hauptverfasser: Mentes, Ahmet, Deng, Nan-Jie, Vijayan, R. S. K, Xia, Junchao, Gallicchio, Emilio, Levy, Ronald M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2470
container_issue 5
container_start_page 2459
container_title Journal of chemical theory and computation
container_volume 12
creator Mentes, Ahmet
Deng, Nan-Jie
Vijayan, R. S. K
Xia, Junchao
Gallicchio, Emilio
Levy, Ronald M
description Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein–ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2–3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.
doi_str_mv 10.1021/acs.jctc.6b00134
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4862910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825537157</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-b196e85b04b6645e74c8c1444978882c96c3c7a32daa391c82cbd98305ffcf8d3</originalsourceid><addsrcrecordid>eNqFUk1vEzEUtBCIlsKdE_KRAwn-Wq-XA1IpCUVqBULlbHltb-LKsYPtpc3f4ZfiNB-CA-LkJ7-ZefP0BoCXGE0xIvit0nl6q4ue8h4hTNkjcIob1k06TvjjY43FCXiW8y1ClDJCn4IT0qIWCd6cgl8fXDAuLOAs2LTYwI8ul-T6sbgY4HlQfpNdhte2LKN5By_VyvkSg1MBfrNr77SCs3u9VGFh4Z0rS3gTU65U5eHcq1Js2GoPMcHDnOtoLPyarHH6YYYK5tibJ2sPRma5uJXaQp6DJ4Py2b7Yv2fg-3x2c3E5ufry6fPF-dVEMc7LpMcdt6LpEes5Z41tmRYaM8a6VghBdMc11a2ixChFO6zrV286QVEzDHoQhp6B9zvd9divrNE2lKS8XKfqI21kVE7-3QluKRfxp2SCkw6jKvB6L5Dij9HmIlcua-u9CjaOWWJBmoa2uGn_D62eCanmRYWiHVSnmHOyw9ERRnKbAllTILcpkPsUVMqrPzc5Eg5nr4A3O8ADNY6pHiz_W-83YnfCAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788224448</pqid></control><display><type>article</type><title>Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mentes, Ahmet ; Deng, Nan-Jie ; Vijayan, R. S. K ; Xia, Junchao ; Gallicchio, Emilio ; Levy, Ronald M</creator><creatorcontrib>Mentes, Ahmet ; Deng, Nan-Jie ; Vijayan, R. S. K ; Xia, Junchao ; Gallicchio, Emilio ; Levy, Ronald M</creatorcontrib><description>Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein–ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2–3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00134</identifier><identifier>PMID: 27070865</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Barriers ; Binding energy ; Computer simulation ; Crystallography, X-Ray ; Degrees of freedom ; Exchange ; Flattening ; Forecasting ; HIV Integrase - chemistry ; HIV Integrase - metabolism ; Mathematical analysis ; Mathematical models ; Molecular Dynamics Simulation ; Protein Binding - physiology ; Protein Structure, Secondary ; Torsion, Mechanical ; Xylenes - chemistry ; Xylenes - metabolism</subject><ispartof>Journal of chemical theory and computation, 2016-05, Vol.12 (5), p.2459-2470</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-b196e85b04b6645e74c8c1444978882c96c3c7a32daa391c82cbd98305ffcf8d3</citedby><cites>FETCH-LOGICAL-a466t-b196e85b04b6645e74c8c1444978882c96c3c7a32daa391c82cbd98305ffcf8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00134$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00134$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27070865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mentes, Ahmet</creatorcontrib><creatorcontrib>Deng, Nan-Jie</creatorcontrib><creatorcontrib>Vijayan, R. S. K</creatorcontrib><creatorcontrib>Xia, Junchao</creatorcontrib><creatorcontrib>Gallicchio, Emilio</creatorcontrib><creatorcontrib>Levy, Ronald M</creatorcontrib><title>Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein–ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2–3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.</description><subject>Barriers</subject><subject>Binding energy</subject><subject>Computer simulation</subject><subject>Crystallography, X-Ray</subject><subject>Degrees of freedom</subject><subject>Exchange</subject><subject>Flattening</subject><subject>Forecasting</subject><subject>HIV Integrase - chemistry</subject><subject>HIV Integrase - metabolism</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Binding - physiology</subject><subject>Protein Structure, Secondary</subject><subject>Torsion, Mechanical</subject><subject>Xylenes - chemistry</subject><subject>Xylenes - metabolism</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1vEzEUtBCIlsKdE_KRAwn-Wq-XA1IpCUVqBULlbHltb-LKsYPtpc3f4ZfiNB-CA-LkJ7-ZefP0BoCXGE0xIvit0nl6q4ue8h4hTNkjcIob1k06TvjjY43FCXiW8y1ClDJCn4IT0qIWCd6cgl8fXDAuLOAs2LTYwI8ul-T6sbgY4HlQfpNdhte2LKN5By_VyvkSg1MBfrNr77SCs3u9VGFh4Z0rS3gTU65U5eHcq1Js2GoPMcHDnOtoLPyarHH6YYYK5tibJ2sPRma5uJXaQp6DJ4Py2b7Yv2fg-3x2c3E5ufry6fPF-dVEMc7LpMcdt6LpEes5Z41tmRYaM8a6VghBdMc11a2ixChFO6zrV286QVEzDHoQhp6B9zvd9divrNE2lKS8XKfqI21kVE7-3QluKRfxp2SCkw6jKvB6L5Dij9HmIlcua-u9CjaOWWJBmoa2uGn_D62eCanmRYWiHVSnmHOyw9ERRnKbAllTILcpkPsUVMqrPzc5Eg5nr4A3O8ADNY6pHiz_W-83YnfCAA</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Mentes, Ahmet</creator><creator>Deng, Nan-Jie</creator><creator>Vijayan, R. S. K</creator><creator>Xia, Junchao</creator><creator>Gallicchio, Emilio</creator><creator>Levy, Ronald M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20160510</creationdate><title>Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation</title><author>Mentes, Ahmet ; Deng, Nan-Jie ; Vijayan, R. S. K ; Xia, Junchao ; Gallicchio, Emilio ; Levy, Ronald M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-b196e85b04b6645e74c8c1444978882c96c3c7a32daa391c82cbd98305ffcf8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Barriers</topic><topic>Binding energy</topic><topic>Computer simulation</topic><topic>Crystallography, X-Ray</topic><topic>Degrees of freedom</topic><topic>Exchange</topic><topic>Flattening</topic><topic>Forecasting</topic><topic>HIV Integrase - chemistry</topic><topic>HIV Integrase - metabolism</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Binding - physiology</topic><topic>Protein Structure, Secondary</topic><topic>Torsion, Mechanical</topic><topic>Xylenes - chemistry</topic><topic>Xylenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mentes, Ahmet</creatorcontrib><creatorcontrib>Deng, Nan-Jie</creatorcontrib><creatorcontrib>Vijayan, R. S. K</creatorcontrib><creatorcontrib>Xia, Junchao</creatorcontrib><creatorcontrib>Gallicchio, Emilio</creatorcontrib><creatorcontrib>Levy, Ronald M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mentes, Ahmet</au><au>Deng, Nan-Jie</au><au>Vijayan, R. S. K</au><au>Xia, Junchao</au><au>Gallicchio, Emilio</au><au>Levy, Ronald M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>12</volume><issue>5</issue><spage>2459</spage><epage>2470</epage><pages>2459-2470</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein–ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2–3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27070865</pmid><doi>10.1021/acs.jctc.6b00134</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2016-05, Vol.12 (5), p.2459-2470
issn 1549-9618
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4862910
source MEDLINE; ACS Publications
subjects Barriers
Binding energy
Computer simulation
Crystallography, X-Ray
Degrees of freedom
Exchange
Flattening
Forecasting
HIV Integrase - chemistry
HIV Integrase - metabolism
Mathematical analysis
Mathematical models
Molecular Dynamics Simulation
Protein Binding - physiology
Protein Structure, Secondary
Torsion, Mechanical
Xylenes - chemistry
Xylenes - metabolism
title Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20Energy%20Distribution%20Analysis%20Method:%20Hamiltonian%20Replica%20Exchange%20with%20Torsional%20Flattening%20for%20Binding%20Mode%20Prediction%20and%20Binding%20Free%20Energy%20Estimation&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Mentes,%20Ahmet&rft.date=2016-05-10&rft.volume=12&rft.issue=5&rft.spage=2459&rft.epage=2470&rft.pages=2459-2470&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00134&rft_dat=%3Cproquest_pubme%3E1825537157%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788224448&rft_id=info:pmid/27070865&rfr_iscdi=true