Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation
Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy D...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2016-05, Vol.12 (5), p.2459-2470 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2470 |
---|---|
container_issue | 5 |
container_start_page | 2459 |
container_title | Journal of chemical theory and computation |
container_volume | 12 |
creator | Mentes, Ahmet Deng, Nan-Jie Vijayan, R. S. K Xia, Junchao Gallicchio, Emilio Levy, Ronald M |
description | Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein–ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2–3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable. |
doi_str_mv | 10.1021/acs.jctc.6b00134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4862910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825537157</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-b196e85b04b6645e74c8c1444978882c96c3c7a32daa391c82cbd98305ffcf8d3</originalsourceid><addsrcrecordid>eNqFUk1vEzEUtBCIlsKdE_KRAwn-Wq-XA1IpCUVqBULlbHltb-LKsYPtpc3f4ZfiNB-CA-LkJ7-ZefP0BoCXGE0xIvit0nl6q4ue8h4hTNkjcIob1k06TvjjY43FCXiW8y1ClDJCn4IT0qIWCd6cgl8fXDAuLOAs2LTYwI8ul-T6sbgY4HlQfpNdhte2LKN5By_VyvkSg1MBfrNr77SCs3u9VGFh4Z0rS3gTU65U5eHcq1Js2GoPMcHDnOtoLPyarHH6YYYK5tibJ2sPRma5uJXaQp6DJ4Py2b7Yv2fg-3x2c3E5ufry6fPF-dVEMc7LpMcdt6LpEes5Z41tmRYaM8a6VghBdMc11a2ixChFO6zrV286QVEzDHoQhp6B9zvd9divrNE2lKS8XKfqI21kVE7-3QluKRfxp2SCkw6jKvB6L5Dij9HmIlcua-u9CjaOWWJBmoa2uGn_D62eCanmRYWiHVSnmHOyw9ERRnKbAllTILcpkPsUVMqrPzc5Eg5nr4A3O8ADNY6pHiz_W-83YnfCAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788224448</pqid></control><display><type>article</type><title>Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mentes, Ahmet ; Deng, Nan-Jie ; Vijayan, R. S. K ; Xia, Junchao ; Gallicchio, Emilio ; Levy, Ronald M</creator><creatorcontrib>Mentes, Ahmet ; Deng, Nan-Jie ; Vijayan, R. S. K ; Xia, Junchao ; Gallicchio, Emilio ; Levy, Ronald M</creatorcontrib><description>Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein–ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2–3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00134</identifier><identifier>PMID: 27070865</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Barriers ; Binding energy ; Computer simulation ; Crystallography, X-Ray ; Degrees of freedom ; Exchange ; Flattening ; Forecasting ; HIV Integrase - chemistry ; HIV Integrase - metabolism ; Mathematical analysis ; Mathematical models ; Molecular Dynamics Simulation ; Protein Binding - physiology ; Protein Structure, Secondary ; Torsion, Mechanical ; Xylenes - chemistry ; Xylenes - metabolism</subject><ispartof>Journal of chemical theory and computation, 2016-05, Vol.12 (5), p.2459-2470</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-b196e85b04b6645e74c8c1444978882c96c3c7a32daa391c82cbd98305ffcf8d3</citedby><cites>FETCH-LOGICAL-a466t-b196e85b04b6645e74c8c1444978882c96c3c7a32daa391c82cbd98305ffcf8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00134$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00134$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27070865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mentes, Ahmet</creatorcontrib><creatorcontrib>Deng, Nan-Jie</creatorcontrib><creatorcontrib>Vijayan, R. S. K</creatorcontrib><creatorcontrib>Xia, Junchao</creatorcontrib><creatorcontrib>Gallicchio, Emilio</creatorcontrib><creatorcontrib>Levy, Ronald M</creatorcontrib><title>Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein–ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2–3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.</description><subject>Barriers</subject><subject>Binding energy</subject><subject>Computer simulation</subject><subject>Crystallography, X-Ray</subject><subject>Degrees of freedom</subject><subject>Exchange</subject><subject>Flattening</subject><subject>Forecasting</subject><subject>HIV Integrase - chemistry</subject><subject>HIV Integrase - metabolism</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Binding - physiology</subject><subject>Protein Structure, Secondary</subject><subject>Torsion, Mechanical</subject><subject>Xylenes - chemistry</subject><subject>Xylenes - metabolism</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1vEzEUtBCIlsKdE_KRAwn-Wq-XA1IpCUVqBULlbHltb-LKsYPtpc3f4ZfiNB-CA-LkJ7-ZefP0BoCXGE0xIvit0nl6q4ue8h4hTNkjcIob1k06TvjjY43FCXiW8y1ClDJCn4IT0qIWCd6cgl8fXDAuLOAs2LTYwI8ul-T6sbgY4HlQfpNdhte2LKN5By_VyvkSg1MBfrNr77SCs3u9VGFh4Z0rS3gTU65U5eHcq1Js2GoPMcHDnOtoLPyarHH6YYYK5tibJ2sPRma5uJXaQp6DJ4Py2b7Yv2fg-3x2c3E5ufry6fPF-dVEMc7LpMcdt6LpEes5Z41tmRYaM8a6VghBdMc11a2ixChFO6zrV286QVEzDHoQhp6B9zvd9divrNE2lKS8XKfqI21kVE7-3QluKRfxp2SCkw6jKvB6L5Dij9HmIlcua-u9CjaOWWJBmoa2uGn_D62eCanmRYWiHVSnmHOyw9ERRnKbAllTILcpkPsUVMqrPzc5Eg5nr4A3O8ADNY6pHiz_W-83YnfCAA</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Mentes, Ahmet</creator><creator>Deng, Nan-Jie</creator><creator>Vijayan, R. S. K</creator><creator>Xia, Junchao</creator><creator>Gallicchio, Emilio</creator><creator>Levy, Ronald M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20160510</creationdate><title>Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation</title><author>Mentes, Ahmet ; Deng, Nan-Jie ; Vijayan, R. S. K ; Xia, Junchao ; Gallicchio, Emilio ; Levy, Ronald M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-b196e85b04b6645e74c8c1444978882c96c3c7a32daa391c82cbd98305ffcf8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Barriers</topic><topic>Binding energy</topic><topic>Computer simulation</topic><topic>Crystallography, X-Ray</topic><topic>Degrees of freedom</topic><topic>Exchange</topic><topic>Flattening</topic><topic>Forecasting</topic><topic>HIV Integrase - chemistry</topic><topic>HIV Integrase - metabolism</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Binding - physiology</topic><topic>Protein Structure, Secondary</topic><topic>Torsion, Mechanical</topic><topic>Xylenes - chemistry</topic><topic>Xylenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mentes, Ahmet</creatorcontrib><creatorcontrib>Deng, Nan-Jie</creatorcontrib><creatorcontrib>Vijayan, R. S. K</creatorcontrib><creatorcontrib>Xia, Junchao</creatorcontrib><creatorcontrib>Gallicchio, Emilio</creatorcontrib><creatorcontrib>Levy, Ronald M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mentes, Ahmet</au><au>Deng, Nan-Jie</au><au>Vijayan, R. S. K</au><au>Xia, Junchao</au><au>Gallicchio, Emilio</au><au>Levy, Ronald M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>12</volume><issue>5</issue><spage>2459</spage><epage>2470</epage><pages>2459-2470</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein–ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2–3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27070865</pmid><doi>10.1021/acs.jctc.6b00134</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2016-05, Vol.12 (5), p.2459-2470 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4862910 |
source | MEDLINE; ACS Publications |
subjects | Barriers Binding energy Computer simulation Crystallography, X-Ray Degrees of freedom Exchange Flattening Forecasting HIV Integrase - chemistry HIV Integrase - metabolism Mathematical analysis Mathematical models Molecular Dynamics Simulation Protein Binding - physiology Protein Structure, Secondary Torsion, Mechanical Xylenes - chemistry Xylenes - metabolism |
title | Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20Energy%20Distribution%20Analysis%20Method:%20Hamiltonian%20Replica%20Exchange%20with%20Torsional%20Flattening%20for%20Binding%20Mode%20Prediction%20and%20Binding%20Free%20Energy%20Estimation&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Mentes,%20Ahmet&rft.date=2016-05-10&rft.volume=12&rft.issue=5&rft.spage=2459&rft.epage=2470&rft.pages=2459-2470&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00134&rft_dat=%3Cproquest_pubme%3E1825537157%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788224448&rft_id=info:pmid/27070865&rfr_iscdi=true |