Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae

n -Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n -butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n -butanol can be achieved via more than one metabolic pathway. Here we report the metabolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-05, Vol.6 (1), p.25675-25675, Article 25675
Hauptverfasser: Shi, Shuobo, Si, Tong, Liu, Zihe, Zhang, Hongfang, Ang, Ee Lui, Zhao, Huimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25675
container_issue 1
container_start_page 25675
container_title Scientific reports
container_volume 6
creator Shi, Shuobo
Si, Tong
Liu, Zihe
Zhang, Hongfang
Ang, Ee Lui
Zhao, Huimin
description n -Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n -butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n -butanol can be achieved via more than one metabolic pathway. Here we report the metabolic engineering of Saccharomyces cerevisiae to produce n -butanol through a synergistic pathway: the endogenous threonine pathway and the introduced citramalate pathway. Firstly, we characterized and optimized the endogenous threonine pathway; then, a citramalate synthase (CimA) mediated pathway was introduced to construct the synergistic pathway; next, the synergistic pathway was optimized by additional overexpression of relevant genes identified previously; meanwhile, the n -butanol production was also improved by overexpression of keto-acid decarboxylases (KDC) and alcohol dehydrogenase (ADH). After combining these strategies with co-expression of LEU1 (two copies), LEU4 , LEU2 (two copies), LEU5, CimA, NFS1, ADH7 and ARO10 * , we achieved an n -butanol production of 835 mg/L in the final engineered strain, which is almost 7-fold increase compared to the initial strain. Furthermore, the production showed a 3-fold of the highest titer ever reported in yeast. Therefore, the engineered yeast strain represents a promising alternative platform for n -butanol production.
doi_str_mv 10.1038/srep25675
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4861978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1788227759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-817c5d09436ccbfe3639bdbdd7c146eddeb65bc1ff6ac54425f773ecd5ae41513</originalsourceid><addsrcrecordid>eNplkd9rFDEQx4NUbGn74D8gAV-qsHWTzY_dF0GK2kLFB_U5ZCezdyl7yTbZrdx_b8rV46p5mcB8-M4MH0Jes_qS1U37ISecuFRaviAnvBay4g3nRwf_Y3Ke811dnuSdYN0rcsw1U6zmzQmBbzjbPo4eKIaVD4jJhxWNA7U0bwOmlc9zaU52Xv-2WzrEREPVL7MNcaRTim6B2cdAfaA_LMDaprjZAmYKmPDBZ2_xjLwc7Jjx_Kmekl9fPv-8uq5uv3-9ufp0W4GsxVy1TIN0dScaBdAP2Kim613vnAYmFDqHvZI9sGFQFqQQXA5aNwhOWhRMsuaUfNzlTku_QQcY5mRHMyW_sWlrovXmeSf4tVnFByNaxTrdloCLp4AU7xfMs9n4DDiONmBcsmG6bTnXWnYFffsPeheXFMp5hrVdq5RQnSzUux0FKeYiatgvw2rzaM_s7RX2zeH2e_KvqwK83wF5enSE6WDkf2l_AK4IpsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898664695</pqid></control><display><type>article</type><title>Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae</title><source>PubMed (Medline)</source><source>Nature Free</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Springer Nature OA Free Journals</source><creator>Shi, Shuobo ; Si, Tong ; Liu, Zihe ; Zhang, Hongfang ; Ang, Ee Lui ; Zhao, Huimin</creator><creatorcontrib>Shi, Shuobo ; Si, Tong ; Liu, Zihe ; Zhang, Hongfang ; Ang, Ee Lui ; Zhao, Huimin</creatorcontrib><description>n -Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n -butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n -butanol can be achieved via more than one metabolic pathway. Here we report the metabolic engineering of Saccharomyces cerevisiae to produce n -butanol through a synergistic pathway: the endogenous threonine pathway and the introduced citramalate pathway. Firstly, we characterized and optimized the endogenous threonine pathway; then, a citramalate synthase (CimA) mediated pathway was introduced to construct the synergistic pathway; next, the synergistic pathway was optimized by additional overexpression of relevant genes identified previously; meanwhile, the n -butanol production was also improved by overexpression of keto-acid decarboxylases (KDC) and alcohol dehydrogenase (ADH). After combining these strategies with co-expression of LEU1 (two copies), LEU4 , LEU2 (two copies), LEU5, CimA, NFS1, ADH7 and ARO10 * , we achieved an n -butanol production of 835 mg/L in the final engineered strain, which is almost 7-fold increase compared to the initial strain. Furthermore, the production showed a 3-fold of the highest titer ever reported in yeast. Therefore, the engineered yeast strain represents a promising alternative platform for n -butanol production.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep25675</identifier><identifier>PMID: 27161023</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/22 ; 631/61/252 ; 631/61/318 ; Alcohol dehydrogenase ; Butanol ; Chemical industry ; Humanities and Social Sciences ; Metabolic engineering ; Metabolism ; multidisciplinary ; Science ; Threonine ; Yeast ; Yeasts</subject><ispartof>Scientific reports, 2016-05, Vol.6 (1), p.25675-25675, Article 25675</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group May 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-817c5d09436ccbfe3639bdbdd7c146eddeb65bc1ff6ac54425f773ecd5ae41513</citedby><cites>FETCH-LOGICAL-c504t-817c5d09436ccbfe3639bdbdd7c146eddeb65bc1ff6ac54425f773ecd5ae41513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861978/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861978/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27161023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Shuobo</creatorcontrib><creatorcontrib>Si, Tong</creatorcontrib><creatorcontrib>Liu, Zihe</creatorcontrib><creatorcontrib>Zhang, Hongfang</creatorcontrib><creatorcontrib>Ang, Ee Lui</creatorcontrib><creatorcontrib>Zhao, Huimin</creatorcontrib><title>Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>n -Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n -butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n -butanol can be achieved via more than one metabolic pathway. Here we report the metabolic engineering of Saccharomyces cerevisiae to produce n -butanol through a synergistic pathway: the endogenous threonine pathway and the introduced citramalate pathway. Firstly, we characterized and optimized the endogenous threonine pathway; then, a citramalate synthase (CimA) mediated pathway was introduced to construct the synergistic pathway; next, the synergistic pathway was optimized by additional overexpression of relevant genes identified previously; meanwhile, the n -butanol production was also improved by overexpression of keto-acid decarboxylases (KDC) and alcohol dehydrogenase (ADH). After combining these strategies with co-expression of LEU1 (two copies), LEU4 , LEU2 (two copies), LEU5, CimA, NFS1, ADH7 and ARO10 * , we achieved an n -butanol production of 835 mg/L in the final engineered strain, which is almost 7-fold increase compared to the initial strain. Furthermore, the production showed a 3-fold of the highest titer ever reported in yeast. Therefore, the engineered yeast strain represents a promising alternative platform for n -butanol production.</description><subject>38/22</subject><subject>631/61/252</subject><subject>631/61/318</subject><subject>Alcohol dehydrogenase</subject><subject>Butanol</subject><subject>Chemical industry</subject><subject>Humanities and Social Sciences</subject><subject>Metabolic engineering</subject><subject>Metabolism</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Threonine</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkd9rFDEQx4NUbGn74D8gAV-qsHWTzY_dF0GK2kLFB_U5ZCezdyl7yTbZrdx_b8rV46p5mcB8-M4MH0Jes_qS1U37ISecuFRaviAnvBay4g3nRwf_Y3Ke811dnuSdYN0rcsw1U6zmzQmBbzjbPo4eKIaVD4jJhxWNA7U0bwOmlc9zaU52Xv-2WzrEREPVL7MNcaRTim6B2cdAfaA_LMDaprjZAmYKmPDBZ2_xjLwc7Jjx_Kmekl9fPv-8uq5uv3-9ufp0W4GsxVy1TIN0dScaBdAP2Kim613vnAYmFDqHvZI9sGFQFqQQXA5aNwhOWhRMsuaUfNzlTku_QQcY5mRHMyW_sWlrovXmeSf4tVnFByNaxTrdloCLp4AU7xfMs9n4DDiONmBcsmG6bTnXWnYFffsPeheXFMp5hrVdq5RQnSzUux0FKeYiatgvw2rzaM_s7RX2zeH2e_KvqwK83wF5enSE6WDkf2l_AK4IpsQ</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Shi, Shuobo</creator><creator>Si, Tong</creator><creator>Liu, Zihe</creator><creator>Zhang, Hongfang</creator><creator>Ang, Ee Lui</creator><creator>Zhao, Huimin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160510</creationdate><title>Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae</title><author>Shi, Shuobo ; Si, Tong ; Liu, Zihe ; Zhang, Hongfang ; Ang, Ee Lui ; Zhao, Huimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-817c5d09436ccbfe3639bdbdd7c146eddeb65bc1ff6ac54425f773ecd5ae41513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>38/22</topic><topic>631/61/252</topic><topic>631/61/318</topic><topic>Alcohol dehydrogenase</topic><topic>Butanol</topic><topic>Chemical industry</topic><topic>Humanities and Social Sciences</topic><topic>Metabolic engineering</topic><topic>Metabolism</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Threonine</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Shuobo</creatorcontrib><creatorcontrib>Si, Tong</creatorcontrib><creatorcontrib>Liu, Zihe</creatorcontrib><creatorcontrib>Zhang, Hongfang</creatorcontrib><creatorcontrib>Ang, Ee Lui</creatorcontrib><creatorcontrib>Zhao, Huimin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Shuobo</au><au>Si, Tong</au><au>Liu, Zihe</au><au>Zhang, Hongfang</au><au>Ang, Ee Lui</au><au>Zhao, Huimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>25675</spage><epage>25675</epage><pages>25675-25675</pages><artnum>25675</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>n -Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n -butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n -butanol can be achieved via more than one metabolic pathway. Here we report the metabolic engineering of Saccharomyces cerevisiae to produce n -butanol through a synergistic pathway: the endogenous threonine pathway and the introduced citramalate pathway. Firstly, we characterized and optimized the endogenous threonine pathway; then, a citramalate synthase (CimA) mediated pathway was introduced to construct the synergistic pathway; next, the synergistic pathway was optimized by additional overexpression of relevant genes identified previously; meanwhile, the n -butanol production was also improved by overexpression of keto-acid decarboxylases (KDC) and alcohol dehydrogenase (ADH). After combining these strategies with co-expression of LEU1 (two copies), LEU4 , LEU2 (two copies), LEU5, CimA, NFS1, ADH7 and ARO10 * , we achieved an n -butanol production of 835 mg/L in the final engineered strain, which is almost 7-fold increase compared to the initial strain. Furthermore, the production showed a 3-fold of the highest titer ever reported in yeast. Therefore, the engineered yeast strain represents a promising alternative platform for n -butanol production.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27161023</pmid><doi>10.1038/srep25675</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-05, Vol.6 (1), p.25675-25675, Article 25675
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4861978
source PubMed (Medline); Nature Free; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library; Springer Nature OA Free Journals
subjects 38/22
631/61/252
631/61/318
Alcohol dehydrogenase
Butanol
Chemical industry
Humanities and Social Sciences
Metabolic engineering
Metabolism
multidisciplinary
Science
Threonine
Yeast
Yeasts
title Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20a%20synergistic%20pathway%20for%20n-butanol%20production%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Scientific%20reports&rft.au=Shi,%20Shuobo&rft.date=2016-05-10&rft.volume=6&rft.issue=1&rft.spage=25675&rft.epage=25675&rft.pages=25675-25675&rft.artnum=25675&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep25675&rft_dat=%3Cproquest_pubme%3E1788227759%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898664695&rft_id=info:pmid/27161023&rfr_iscdi=true