Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance

High power conversion efficiency and device stabilization are two major challenges for CH 3 NH 3 PbI 3 (MAPbI 3 ) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-05, Vol.6 (1), p.25648-25648, Article 25648
Hauptverfasser: Kim, Jinhyun, Hwang, Taehyun, Lee, Sangheon, Lee, Byungho, Kim, Jaewon, Jang, Gil Su, Nam, Seunghoon, Park, Byungwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25648
container_issue 1
container_start_page 25648
container_title Scientific reports
container_volume 6
creator Kim, Jinhyun
Hwang, Taehyun
Lee, Sangheon
Lee, Byungho
Kim, Jaewon
Jang, Gil Su
Nam, Seunghoon
Park, Byungwoo
description High power conversion efficiency and device stabilization are two major challenges for CH 3 NH 3 PbI 3 (MAPbI 3 ) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C 2 H 5 OH into the PbCl 2 film was observed to be more favorable than that of MAI/C 3 H 7 OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI 3 with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl 2 converting into MAPbI 3 . Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition.
doi_str_mv 10.1038/srep25648
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4860713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787935234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-293df3b41293040786ef7e082f89985bd59172e46ed3352a7cbefa55b00f84113</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMoOqYX_gEpeKPCNF9t0xtBhx-DgYJ6HdL2dOvskpl0A_-9Z26OqblJOO-T95zDS8gxo5eMCnUVPMx4nEi1QzqcyrjHBee7W-8DchTChOKJeSZZtk8OeMqWP1iHjF5cswDbRsaW0cC24KdQ1qaF6HlsAkQmRLfOBayHqHI-aseogHeL8F4j9OqNDVifmrZ29tsEDY2P-tA0S_BbswUckr3KNAGO1neXvN3fvfYfe8Onh0H_ZtgrpFBtj2eirEQuGT6opKlKoEqBKl6pLFNxXsYZSznIBEohYm7SIofKxHFOaaUkY6JLrle-s3mOmxS4mjeNnvl6avyndqbWvxVbj_XILbRUCU2ZQIOztYF3H3MIrZ7WocBtjAU3D5qlKs2wtZCInv5BJ27uLa6nmcpUkqBlgtT5iiq8CxhWtRmGUb1MUG8SRPZke_oN-ZMXAhcrIKBkR-C3Wv5z-wIpQ6Wc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898668606</pqid></control><display><type>article</type><title>Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Jinhyun ; Hwang, Taehyun ; Lee, Sangheon ; Lee, Byungho ; Kim, Jaewon ; Jang, Gil Su ; Nam, Seunghoon ; Park, Byungwoo</creator><creatorcontrib>Kim, Jinhyun ; Hwang, Taehyun ; Lee, Sangheon ; Lee, Byungho ; Kim, Jaewon ; Jang, Gil Su ; Nam, Seunghoon ; Park, Byungwoo</creatorcontrib><description>High power conversion efficiency and device stabilization are two major challenges for CH 3 NH 3 PbI 3 (MAPbI 3 ) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C 2 H 5 OH into the PbCl 2 film was observed to be more favorable than that of MAI/C 3 H 7 OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI 3 with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl 2 converting into MAPbI 3 . Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep25648</identifier><identifier>PMID: 27156481</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/946 ; 639/301/357/551 ; Crystallinity ; Efficiency ; Ethanol ; Genetic transformation ; Humanities and Social Sciences ; Impurities ; Intermediates ; multidisciplinary ; Photovoltaic cells ; Propanol ; Reaction mechanisms ; Science ; Silicon wafers ; Solar cells</subject><ispartof>Scientific reports, 2016-05, Vol.6 (1), p.25648-25648, Article 25648</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group May 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-293df3b41293040786ef7e082f89985bd59172e46ed3352a7cbefa55b00f84113</citedby><cites>FETCH-LOGICAL-c438t-293df3b41293040786ef7e082f89985bd59172e46ed3352a7cbefa55b00f84113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860713/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860713/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27156481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jinhyun</creatorcontrib><creatorcontrib>Hwang, Taehyun</creatorcontrib><creatorcontrib>Lee, Sangheon</creatorcontrib><creatorcontrib>Lee, Byungho</creatorcontrib><creatorcontrib>Kim, Jaewon</creatorcontrib><creatorcontrib>Jang, Gil Su</creatorcontrib><creatorcontrib>Nam, Seunghoon</creatorcontrib><creatorcontrib>Park, Byungwoo</creatorcontrib><title>Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>High power conversion efficiency and device stabilization are two major challenges for CH 3 NH 3 PbI 3 (MAPbI 3 ) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C 2 H 5 OH into the PbCl 2 film was observed to be more favorable than that of MAI/C 3 H 7 OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI 3 with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl 2 converting into MAPbI 3 . Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition.</description><subject>639/301/299/946</subject><subject>639/301/357/551</subject><subject>Crystallinity</subject><subject>Efficiency</subject><subject>Ethanol</subject><subject>Genetic transformation</subject><subject>Humanities and Social Sciences</subject><subject>Impurities</subject><subject>Intermediates</subject><subject>multidisciplinary</subject><subject>Photovoltaic cells</subject><subject>Propanol</subject><subject>Reaction mechanisms</subject><subject>Science</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LwzAUhoMoOqYX_gEpeKPCNF9t0xtBhx-DgYJ6HdL2dOvskpl0A_-9Z26OqblJOO-T95zDS8gxo5eMCnUVPMx4nEi1QzqcyrjHBee7W-8DchTChOKJeSZZtk8OeMqWP1iHjF5cswDbRsaW0cC24KdQ1qaF6HlsAkQmRLfOBayHqHI-aseogHeL8F4j9OqNDVifmrZ29tsEDY2P-tA0S_BbswUckr3KNAGO1neXvN3fvfYfe8Onh0H_ZtgrpFBtj2eirEQuGT6opKlKoEqBKl6pLFNxXsYZSznIBEohYm7SIofKxHFOaaUkY6JLrle-s3mOmxS4mjeNnvl6avyndqbWvxVbj_XILbRUCU2ZQIOztYF3H3MIrZ7WocBtjAU3D5qlKs2wtZCInv5BJ27uLa6nmcpUkqBlgtT5iiq8CxhWtRmGUb1MUG8SRPZke_oN-ZMXAhcrIKBkR-C3Wv5z-wIpQ6Wc</recordid><startdate>20160509</startdate><enddate>20160509</enddate><creator>Kim, Jinhyun</creator><creator>Hwang, Taehyun</creator><creator>Lee, Sangheon</creator><creator>Lee, Byungho</creator><creator>Kim, Jaewon</creator><creator>Jang, Gil Su</creator><creator>Nam, Seunghoon</creator><creator>Park, Byungwoo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160509</creationdate><title>Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance</title><author>Kim, Jinhyun ; Hwang, Taehyun ; Lee, Sangheon ; Lee, Byungho ; Kim, Jaewon ; Jang, Gil Su ; Nam, Seunghoon ; Park, Byungwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-293df3b41293040786ef7e082f89985bd59172e46ed3352a7cbefa55b00f84113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/299/946</topic><topic>639/301/357/551</topic><topic>Crystallinity</topic><topic>Efficiency</topic><topic>Ethanol</topic><topic>Genetic transformation</topic><topic>Humanities and Social Sciences</topic><topic>Impurities</topic><topic>Intermediates</topic><topic>multidisciplinary</topic><topic>Photovoltaic cells</topic><topic>Propanol</topic><topic>Reaction mechanisms</topic><topic>Science</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jinhyun</creatorcontrib><creatorcontrib>Hwang, Taehyun</creatorcontrib><creatorcontrib>Lee, Sangheon</creatorcontrib><creatorcontrib>Lee, Byungho</creatorcontrib><creatorcontrib>Kim, Jaewon</creatorcontrib><creatorcontrib>Jang, Gil Su</creatorcontrib><creatorcontrib>Nam, Seunghoon</creatorcontrib><creatorcontrib>Park, Byungwoo</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jinhyun</au><au>Hwang, Taehyun</au><au>Lee, Sangheon</au><au>Lee, Byungho</au><au>Kim, Jaewon</au><au>Jang, Gil Su</au><au>Nam, Seunghoon</au><au>Park, Byungwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-05-09</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>25648</spage><epage>25648</epage><pages>25648-25648</pages><artnum>25648</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>High power conversion efficiency and device stabilization are two major challenges for CH 3 NH 3 PbI 3 (MAPbI 3 ) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C 2 H 5 OH into the PbCl 2 film was observed to be more favorable than that of MAI/C 3 H 7 OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI 3 with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl 2 converting into MAPbI 3 . Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27156481</pmid><doi>10.1038/srep25648</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-05, Vol.6 (1), p.25648-25648, Article 25648
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4860713
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 639/301/299/946
639/301/357/551
Crystallinity
Efficiency
Ethanol
Genetic transformation
Humanities and Social Sciences
Impurities
Intermediates
multidisciplinary
Photovoltaic cells
Propanol
Reaction mechanisms
Science
Silicon wafers
Solar cells
title Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%20and%20Intermediate%20Phase%20as%20Boosters%20for%20the%20Perovskite%20Transformation%20and%20Solar%20Cell%20Performance&rft.jtitle=Scientific%20reports&rft.au=Kim,%20Jinhyun&rft.date=2016-05-09&rft.volume=6&rft.issue=1&rft.spage=25648&rft.epage=25648&rft.pages=25648-25648&rft.artnum=25648&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep25648&rft_dat=%3Cproquest_pubme%3E1787935234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898668606&rft_id=info:pmid/27156481&rfr_iscdi=true