Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance
High power conversion efficiency and device stabilization are two major challenges for CH 3 NH 3 PbI 3 (MAPbI 3 ) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synt...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-05, Vol.6 (1), p.25648-25648, Article 25648 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25648 |
---|---|
container_issue | 1 |
container_start_page | 25648 |
container_title | Scientific reports |
container_volume | 6 |
creator | Kim, Jinhyun Hwang, Taehyun Lee, Sangheon Lee, Byungho Kim, Jaewon Jang, Gil Su Nam, Seunghoon Park, Byungwoo |
description | High power conversion efficiency and device stabilization are two major challenges for CH
3
NH
3
PbI
3
(MAPbI
3
) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C
2
H
5
OH into the PbCl
2
film was observed to be more favorable than that of MAI/C
3
H
7
OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI
3
with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl
2
converting into MAPbI
3
. Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition. |
doi_str_mv | 10.1038/srep25648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4860713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787935234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-293df3b41293040786ef7e082f89985bd59172e46ed3352a7cbefa55b00f84113</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMoOqYX_gEpeKPCNF9t0xtBhx-DgYJ6HdL2dOvskpl0A_-9Z26OqblJOO-T95zDS8gxo5eMCnUVPMx4nEi1QzqcyrjHBee7W-8DchTChOKJeSZZtk8OeMqWP1iHjF5cswDbRsaW0cC24KdQ1qaF6HlsAkQmRLfOBayHqHI-aseogHeL8F4j9OqNDVifmrZ29tsEDY2P-tA0S_BbswUckr3KNAGO1neXvN3fvfYfe8Onh0H_ZtgrpFBtj2eirEQuGT6opKlKoEqBKl6pLFNxXsYZSznIBEohYm7SIofKxHFOaaUkY6JLrle-s3mOmxS4mjeNnvl6avyndqbWvxVbj_XILbRUCU2ZQIOztYF3H3MIrZ7WocBtjAU3D5qlKs2wtZCInv5BJ27uLa6nmcpUkqBlgtT5iiq8CxhWtRmGUb1MUG8SRPZke_oN-ZMXAhcrIKBkR-C3Wv5z-wIpQ6Wc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898668606</pqid></control><display><type>article</type><title>Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Jinhyun ; Hwang, Taehyun ; Lee, Sangheon ; Lee, Byungho ; Kim, Jaewon ; Jang, Gil Su ; Nam, Seunghoon ; Park, Byungwoo</creator><creatorcontrib>Kim, Jinhyun ; Hwang, Taehyun ; Lee, Sangheon ; Lee, Byungho ; Kim, Jaewon ; Jang, Gil Su ; Nam, Seunghoon ; Park, Byungwoo</creatorcontrib><description>High power conversion efficiency and device stabilization are two major challenges for CH
3
NH
3
PbI
3
(MAPbI
3
) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C
2
H
5
OH into the PbCl
2
film was observed to be more favorable than that of MAI/C
3
H
7
OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI
3
with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl
2
converting into MAPbI
3
. Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep25648</identifier><identifier>PMID: 27156481</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/946 ; 639/301/357/551 ; Crystallinity ; Efficiency ; Ethanol ; Genetic transformation ; Humanities and Social Sciences ; Impurities ; Intermediates ; multidisciplinary ; Photovoltaic cells ; Propanol ; Reaction mechanisms ; Science ; Silicon wafers ; Solar cells</subject><ispartof>Scientific reports, 2016-05, Vol.6 (1), p.25648-25648, Article 25648</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group May 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-293df3b41293040786ef7e082f89985bd59172e46ed3352a7cbefa55b00f84113</citedby><cites>FETCH-LOGICAL-c438t-293df3b41293040786ef7e082f89985bd59172e46ed3352a7cbefa55b00f84113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860713/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860713/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27156481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jinhyun</creatorcontrib><creatorcontrib>Hwang, Taehyun</creatorcontrib><creatorcontrib>Lee, Sangheon</creatorcontrib><creatorcontrib>Lee, Byungho</creatorcontrib><creatorcontrib>Kim, Jaewon</creatorcontrib><creatorcontrib>Jang, Gil Su</creatorcontrib><creatorcontrib>Nam, Seunghoon</creatorcontrib><creatorcontrib>Park, Byungwoo</creatorcontrib><title>Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>High power conversion efficiency and device stabilization are two major challenges for CH
3
NH
3
PbI
3
(MAPbI
3
) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C
2
H
5
OH into the PbCl
2
film was observed to be more favorable than that of MAI/C
3
H
7
OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI
3
with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl
2
converting into MAPbI
3
. Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition.</description><subject>639/301/299/946</subject><subject>639/301/357/551</subject><subject>Crystallinity</subject><subject>Efficiency</subject><subject>Ethanol</subject><subject>Genetic transformation</subject><subject>Humanities and Social Sciences</subject><subject>Impurities</subject><subject>Intermediates</subject><subject>multidisciplinary</subject><subject>Photovoltaic cells</subject><subject>Propanol</subject><subject>Reaction mechanisms</subject><subject>Science</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LwzAUhoMoOqYX_gEpeKPCNF9t0xtBhx-DgYJ6HdL2dOvskpl0A_-9Z26OqblJOO-T95zDS8gxo5eMCnUVPMx4nEi1QzqcyrjHBee7W-8DchTChOKJeSZZtk8OeMqWP1iHjF5cswDbRsaW0cC24KdQ1qaF6HlsAkQmRLfOBayHqHI-aseogHeL8F4j9OqNDVifmrZ29tsEDY2P-tA0S_BbswUckr3KNAGO1neXvN3fvfYfe8Onh0H_ZtgrpFBtj2eirEQuGT6opKlKoEqBKl6pLFNxXsYZSznIBEohYm7SIofKxHFOaaUkY6JLrle-s3mOmxS4mjeNnvl6avyndqbWvxVbj_XILbRUCU2ZQIOztYF3H3MIrZ7WocBtjAU3D5qlKs2wtZCInv5BJ27uLa6nmcpUkqBlgtT5iiq8CxhWtRmGUb1MUG8SRPZke_oN-ZMXAhcrIKBkR-C3Wv5z-wIpQ6Wc</recordid><startdate>20160509</startdate><enddate>20160509</enddate><creator>Kim, Jinhyun</creator><creator>Hwang, Taehyun</creator><creator>Lee, Sangheon</creator><creator>Lee, Byungho</creator><creator>Kim, Jaewon</creator><creator>Jang, Gil Su</creator><creator>Nam, Seunghoon</creator><creator>Park, Byungwoo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160509</creationdate><title>Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance</title><author>Kim, Jinhyun ; Hwang, Taehyun ; Lee, Sangheon ; Lee, Byungho ; Kim, Jaewon ; Jang, Gil Su ; Nam, Seunghoon ; Park, Byungwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-293df3b41293040786ef7e082f89985bd59172e46ed3352a7cbefa55b00f84113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/299/946</topic><topic>639/301/357/551</topic><topic>Crystallinity</topic><topic>Efficiency</topic><topic>Ethanol</topic><topic>Genetic transformation</topic><topic>Humanities and Social Sciences</topic><topic>Impurities</topic><topic>Intermediates</topic><topic>multidisciplinary</topic><topic>Photovoltaic cells</topic><topic>Propanol</topic><topic>Reaction mechanisms</topic><topic>Science</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jinhyun</creatorcontrib><creatorcontrib>Hwang, Taehyun</creatorcontrib><creatorcontrib>Lee, Sangheon</creatorcontrib><creatorcontrib>Lee, Byungho</creatorcontrib><creatorcontrib>Kim, Jaewon</creatorcontrib><creatorcontrib>Jang, Gil Su</creatorcontrib><creatorcontrib>Nam, Seunghoon</creatorcontrib><creatorcontrib>Park, Byungwoo</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jinhyun</au><au>Hwang, Taehyun</au><au>Lee, Sangheon</au><au>Lee, Byungho</au><au>Kim, Jaewon</au><au>Jang, Gil Su</au><au>Nam, Seunghoon</au><au>Park, Byungwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-05-09</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>25648</spage><epage>25648</epage><pages>25648-25648</pages><artnum>25648</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>High power conversion efficiency and device stabilization are two major challenges for CH
3
NH
3
PbI
3
(MAPbI
3
) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C
2
H
5
OH into the PbCl
2
film was observed to be more favorable than that of MAI/C
3
H
7
OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI
3
with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl
2
converting into MAPbI
3
. Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27156481</pmid><doi>10.1038/srep25648</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-05, Vol.6 (1), p.25648-25648, Article 25648 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4860713 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 639/301/299/946 639/301/357/551 Crystallinity Efficiency Ethanol Genetic transformation Humanities and Social Sciences Impurities Intermediates multidisciplinary Photovoltaic cells Propanol Reaction mechanisms Science Silicon wafers Solar cells |
title | Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%20and%20Intermediate%20Phase%20as%20Boosters%20for%20the%20Perovskite%20Transformation%20and%20Solar%20Cell%20Performance&rft.jtitle=Scientific%20reports&rft.au=Kim,%20Jinhyun&rft.date=2016-05-09&rft.volume=6&rft.issue=1&rft.spage=25648&rft.epage=25648&rft.pages=25648-25648&rft.artnum=25648&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep25648&rft_dat=%3Cproquest_pubme%3E1787935234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898668606&rft_id=info:pmid/27156481&rfr_iscdi=true |