Bayesian Inference of Natural Selection from Allele Frequency Time Series
The advent of accessible ancient DNA technology now allows the direct ascertainment of allele frequencies in ancestral populations, thereby enabling the use of allele frequency time series to detect and estimate natural selection. Such direct observations of allele frequency dynamics are expected to...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2016-05, Vol.203 (1), p.493-511 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 511 |
---|---|
container_issue | 1 |
container_start_page | 493 |
container_title | Genetics (Austin) |
container_volume | 203 |
creator | Schraiber, Joshua G Evans, Steven N Slatkin, Montgomery |
description | The advent of accessible ancient DNA technology now allows the direct ascertainment of allele frequencies in ancestral populations, thereby enabling the use of allele frequency time series to detect and estimate natural selection. Such direct observations of allele frequency dynamics are expected to be more powerful than inferences made using patterns of linked neutral variation obtained from modern individuals. We developed a Bayesian method to make use of allele frequency time series data and infer the parameters of general diploid selection, along with allele age, in nonequilibrium populations. We introduce a novel path augmentation approach, in which we use Markov chain Monte Carlo to integrate over the space of allele frequency trajectories consistent with the observed data. Using simulations, we show that this approach has good power to estimate selection coefficients and allele age. Moreover, when applying our approach to data on horse coat color, we find that ignoring a relevant demographic history can significantly bias the results of inference. Our approach is made available in a C++ software package. |
doi_str_mv | 10.1534/genetics.116.187278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4858794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1789760838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-63be9d3ec31a8ddef6c13fb7e33e74bed74c2a88abf08ae4558aad4832f6de3d3</originalsourceid><addsrcrecordid>eNqNkUtLxDAQgIMoPlZ_gSAFL152zbNNL4KKjwXRg3oOaTrRSJto0gr7742uinrylCHzzTAzH0K7BM-IYPzwATwMzqQZIeWMyIpWcgVtkpqzKS0ZWf0Rb6CtlJ4wxmUt5DraoBUmGFO6ieYnegHJaV_MvYUI3kARbHGthzHqrriFDszggi9sDH1x3HX5oziP8DJmdFHcuR4yFB2kbbRmdZdg5_OdoPvzs7vTy-nVzcX89PhqagSjw7RkDdQtA8OIlm0LtjSE2aYCxqDiDbQVN1RLqRuLpQYuhNS65ZJRW7bAWjZBR8u-z2PTQ2vAD3lS9Rxdr-NCBe3U74x3j-ohvCouhazyRSbo4LNBDHmNNKjeJQNdpz2EMSmSIYEFx_IfqKyrMoPv6P4f9CmM0edLfFC0FrykmWJLysSQUgT7PTfB6t2q-rKqslW1tJqr9n6u_F3zpZG9AUdToQ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789295462</pqid></control><display><type>article</type><title>Bayesian Inference of Natural Selection from Allele Frequency Time Series</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Schraiber, Joshua G ; Evans, Steven N ; Slatkin, Montgomery</creator><creatorcontrib>Schraiber, Joshua G ; Evans, Steven N ; Slatkin, Montgomery</creatorcontrib><description>The advent of accessible ancient DNA technology now allows the direct ascertainment of allele frequencies in ancestral populations, thereby enabling the use of allele frequency time series to detect and estimate natural selection. Such direct observations of allele frequency dynamics are expected to be more powerful than inferences made using patterns of linked neutral variation obtained from modern individuals. We developed a Bayesian method to make use of allele frequency time series data and infer the parameters of general diploid selection, along with allele age, in nonequilibrium populations. We introduce a novel path augmentation approach, in which we use Markov chain Monte Carlo to integrate over the space of allele frequency trajectories consistent with the observed data. Using simulations, we show that this approach has good power to estimate selection coefficients and allele age. Moreover, when applying our approach to data on horse coat color, we find that ignoring a relevant demographic history can significantly bias the results of inference. Our approach is made available in a C++ software package.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.116.187278</identifier><identifier>PMID: 27010022</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Animals ; Bayes Theorem ; Diploidy ; Gene Frequency ; Horses - genetics ; Investigations ; Models, Genetic ; Selection, Genetic ; Skin Pigmentation - genetics ; Software</subject><ispartof>Genetics (Austin), 2016-05, Vol.203 (1), p.493-511</ispartof><rights>Copyright © 2016 by the Genetics Society of America.</rights><rights>Copyright Genetics Society of America May 2016</rights><rights>Copyright © 2016 by the Genetics Society of America 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-63be9d3ec31a8ddef6c13fb7e33e74bed74c2a88abf08ae4558aad4832f6de3d3</citedby><cites>FETCH-LOGICAL-c532t-63be9d3ec31a8ddef6c13fb7e33e74bed74c2a88abf08ae4558aad4832f6de3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27010022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schraiber, Joshua G</creatorcontrib><creatorcontrib>Evans, Steven N</creatorcontrib><creatorcontrib>Slatkin, Montgomery</creatorcontrib><title>Bayesian Inference of Natural Selection from Allele Frequency Time Series</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>The advent of accessible ancient DNA technology now allows the direct ascertainment of allele frequencies in ancestral populations, thereby enabling the use of allele frequency time series to detect and estimate natural selection. Such direct observations of allele frequency dynamics are expected to be more powerful than inferences made using patterns of linked neutral variation obtained from modern individuals. We developed a Bayesian method to make use of allele frequency time series data and infer the parameters of general diploid selection, along with allele age, in nonequilibrium populations. We introduce a novel path augmentation approach, in which we use Markov chain Monte Carlo to integrate over the space of allele frequency trajectories consistent with the observed data. Using simulations, we show that this approach has good power to estimate selection coefficients and allele age. Moreover, when applying our approach to data on horse coat color, we find that ignoring a relevant demographic history can significantly bias the results of inference. Our approach is made available in a C++ software package.</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Diploidy</subject><subject>Gene Frequency</subject><subject>Horses - genetics</subject><subject>Investigations</subject><subject>Models, Genetic</subject><subject>Selection, Genetic</subject><subject>Skin Pigmentation - genetics</subject><subject>Software</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUtLxDAQgIMoPlZ_gSAFL152zbNNL4KKjwXRg3oOaTrRSJto0gr7742uinrylCHzzTAzH0K7BM-IYPzwATwMzqQZIeWMyIpWcgVtkpqzKS0ZWf0Rb6CtlJ4wxmUt5DraoBUmGFO6ieYnegHJaV_MvYUI3kARbHGthzHqrriFDszggi9sDH1x3HX5oziP8DJmdFHcuR4yFB2kbbRmdZdg5_OdoPvzs7vTy-nVzcX89PhqagSjw7RkDdQtA8OIlm0LtjSE2aYCxqDiDbQVN1RLqRuLpQYuhNS65ZJRW7bAWjZBR8u-z2PTQ2vAD3lS9Rxdr-NCBe3U74x3j-ohvCouhazyRSbo4LNBDHmNNKjeJQNdpz2EMSmSIYEFx_IfqKyrMoPv6P4f9CmM0edLfFC0FrykmWJLysSQUgT7PTfB6t2q-rKqslW1tJqr9n6u_F3zpZG9AUdToQ8</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Schraiber, Joshua G</creator><creator>Evans, Steven N</creator><creator>Slatkin, Montgomery</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160501</creationdate><title>Bayesian Inference of Natural Selection from Allele Frequency Time Series</title><author>Schraiber, Joshua G ; Evans, Steven N ; Slatkin, Montgomery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-63be9d3ec31a8ddef6c13fb7e33e74bed74c2a88abf08ae4558aad4832f6de3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Diploidy</topic><topic>Gene Frequency</topic><topic>Horses - genetics</topic><topic>Investigations</topic><topic>Models, Genetic</topic><topic>Selection, Genetic</topic><topic>Skin Pigmentation - genetics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schraiber, Joshua G</creatorcontrib><creatorcontrib>Evans, Steven N</creatorcontrib><creatorcontrib>Slatkin, Montgomery</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schraiber, Joshua G</au><au>Evans, Steven N</au><au>Slatkin, Montgomery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Inference of Natural Selection from Allele Frequency Time Series</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>203</volume><issue>1</issue><spage>493</spage><epage>511</epage><pages>493-511</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>The advent of accessible ancient DNA technology now allows the direct ascertainment of allele frequencies in ancestral populations, thereby enabling the use of allele frequency time series to detect and estimate natural selection. Such direct observations of allele frequency dynamics are expected to be more powerful than inferences made using patterns of linked neutral variation obtained from modern individuals. We developed a Bayesian method to make use of allele frequency time series data and infer the parameters of general diploid selection, along with allele age, in nonequilibrium populations. We introduce a novel path augmentation approach, in which we use Markov chain Monte Carlo to integrate over the space of allele frequency trajectories consistent with the observed data. Using simulations, we show that this approach has good power to estimate selection coefficients and allele age. Moreover, when applying our approach to data on horse coat color, we find that ignoring a relevant demographic history can significantly bias the results of inference. Our approach is made available in a C++ software package.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>27010022</pmid><doi>10.1534/genetics.116.187278</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2016-05, Vol.203 (1), p.493-511 |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4858794 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Bayes Theorem Diploidy Gene Frequency Horses - genetics Investigations Models, Genetic Selection, Genetic Skin Pigmentation - genetics Software |
title | Bayesian Inference of Natural Selection from Allele Frequency Time Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Inference%20of%20Natural%20Selection%20from%20Allele%20Frequency%20Time%20Series&rft.jtitle=Genetics%20(Austin)&rft.au=Schraiber,%20Joshua%20G&rft.date=2016-05-01&rft.volume=203&rft.issue=1&rft.spage=493&rft.epage=511&rft.pages=493-511&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.116.187278&rft_dat=%3Cproquest_pubme%3E1789760838%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789295462&rft_id=info:pmid/27010022&rfr_iscdi=true |