mTORC2 critically regulates renal potassium handling

The mTOR pathway orchestrates cellular homeostasis. The rapamycin-sensitive mTOR complex (mTORC1) in the kidney has been widely studied; however, mTORC2 function in renal tubules is poorly characterized. Here, we generated mice lacking mTORC2 in the distal tubule (Rictorfl/fl Ksp-Cre mice), which we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2016-05, Vol.126 (5), p.1773-1782
Hauptverfasser: Grahammer, Florian, Nesterov, Viatcheslav, Ahmed, Azaz, Steinhardt, Frederic, Sandner, Lukas, Arnold, Frederic, Cordts, Tomke, Negrea, Silvio, Bertog, Marko, Ruegg, Marcus A, Hall, Michael N, Walz, Gerd, Korbmacher, Christoph, Artunc, Ferruh, Huber, Tobias B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1782
container_issue 5
container_start_page 1773
container_title The Journal of clinical investigation
container_volume 126
creator Grahammer, Florian
Nesterov, Viatcheslav
Ahmed, Azaz
Steinhardt, Frederic
Sandner, Lukas
Arnold, Frederic
Cordts, Tomke
Negrea, Silvio
Bertog, Marko
Ruegg, Marcus A
Hall, Michael N
Walz, Gerd
Korbmacher, Christoph
Artunc, Ferruh
Huber, Tobias B
description The mTOR pathway orchestrates cellular homeostasis. The rapamycin-sensitive mTOR complex (mTORC1) in the kidney has been widely studied; however, mTORC2 function in renal tubules is poorly characterized. Here, we generated mice lacking mTORC2 in the distal tubule (Rictorfl/fl Ksp-Cre mice), which were viable and had no obvious phenotype, except for a 2.5-fold increase in plasma aldosterone. Challenged with a low-Na+ diet, these mice adequately reduced Na+ excretion; however, Rictorfl/fl Ksp-Cre mice rapidly developed hyperkalemia on a high-K+ diet, despite a 10-fold increase in serum aldosterone levels, implying that mTORC2 regulates kaliuresis. Phosphorylation of serum- and glucocorticoid-inducible kinase 1 (SGK1) and PKC-α was absent in Rictorfl/fl Ksp-Cre mice, indicating a functional block in K+ secretion activation via ROMK channels. Indeed, patch-clamp experiments on split-open tubular segments from the transition zone of the late connecting tubule and early cortical collecting duct demonstrated that Ba2+-sensitive apical K+ currents were barely detectable in the majority of Rictorfl/fl Ksp-Cre mice. Conversely, epithelial sodium channel (ENaC) activity was largely preserved, suggesting that the reduced ability to maintain K+ homeostasis is the result of impaired apical K+ conductance and not a reduced electrical driving force for K+ secretion. Thus, these data unravel a vital and nonredundant role of mTORC2 for distal tubular K+ handling.
doi_str_mv 10.1172/JCI80304
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4855939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453914178</galeid><sourcerecordid>A453914178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c703t-9add1316d836325d5ede658f8f5dfa23f3567198abb07f3de64955a9f9b2c3153</originalsourceid><addsrcrecordid>eNqN0ltrHCEYBmApLc02LfQXlIVCSS4m9bjqTSEsOWwJLKRpb8Wd0VmDo5vRKc2_r0s2aabsRfBC0ccXDx8AHxE8QYjjr9_nCwEJpK_ABDEmKoGJeA0mEGJUSU7EAXiX0i2EiFJG34IDzCElWNAJoN3N8nqOp3Xvsqu19_fT3rSD19mkMgraTzcx65Tc0E3XOjTehfY9eGO1T-bDrj8EP8_PbuaX1dXyYjE_vapqDkmupG4aRNCsEWRGMGuYacyMCSssa6zGxBI240gKvVpBbklZpJIxLa1c4ZogRg7Bt4fczbDqTFObkHvt1aZ3ne7vVdROjVeCW6s2_lZUMCaJLAFHu4A-3g0mZdW5VBvvdTBxSApxCSVFUNAXUMGhEJxvUz__R2_j0JenelAIcybxP9Vqb5QLNpYj1ttQdUoZkYgWXFS1R7UmmHKfGIx1ZXrkT_b40hrTuXrvhuPRhmKy-ZNbPaSkFj-uX26Xv8b2yzO7NtrndYp-yC6GNIa7h637mFJv7NP_Iai21aseq7fQT8__-wk-liv5C1mW47g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787127592</pqid></control><display><type>article</type><title>mTORC2 critically regulates renal potassium handling</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Grahammer, Florian ; Nesterov, Viatcheslav ; Ahmed, Azaz ; Steinhardt, Frederic ; Sandner, Lukas ; Arnold, Frederic ; Cordts, Tomke ; Negrea, Silvio ; Bertog, Marko ; Ruegg, Marcus A ; Hall, Michael N ; Walz, Gerd ; Korbmacher, Christoph ; Artunc, Ferruh ; Huber, Tobias B</creator><creatorcontrib>Grahammer, Florian ; Nesterov, Viatcheslav ; Ahmed, Azaz ; Steinhardt, Frederic ; Sandner, Lukas ; Arnold, Frederic ; Cordts, Tomke ; Negrea, Silvio ; Bertog, Marko ; Ruegg, Marcus A ; Hall, Michael N ; Walz, Gerd ; Korbmacher, Christoph ; Artunc, Ferruh ; Huber, Tobias B</creatorcontrib><description>The mTOR pathway orchestrates cellular homeostasis. The rapamycin-sensitive mTOR complex (mTORC1) in the kidney has been widely studied; however, mTORC2 function in renal tubules is poorly characterized. Here, we generated mice lacking mTORC2 in the distal tubule (Rictorfl/fl Ksp-Cre mice), which were viable and had no obvious phenotype, except for a 2.5-fold increase in plasma aldosterone. Challenged with a low-Na+ diet, these mice adequately reduced Na+ excretion; however, Rictorfl/fl Ksp-Cre mice rapidly developed hyperkalemia on a high-K+ diet, despite a 10-fold increase in serum aldosterone levels, implying that mTORC2 regulates kaliuresis. Phosphorylation of serum- and glucocorticoid-inducible kinase 1 (SGK1) and PKC-α was absent in Rictorfl/fl Ksp-Cre mice, indicating a functional block in K+ secretion activation via ROMK channels. Indeed, patch-clamp experiments on split-open tubular segments from the transition zone of the late connecting tubule and early cortical collecting duct demonstrated that Ba2+-sensitive apical K+ currents were barely detectable in the majority of Rictorfl/fl Ksp-Cre mice. Conversely, epithelial sodium channel (ENaC) activity was largely preserved, suggesting that the reduced ability to maintain K+ homeostasis is the result of impaired apical K+ conductance and not a reduced electrical driving force for K+ secretion. Thus, these data unravel a vital and nonredundant role of mTORC2 for distal tubular K+ handling.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI80304</identifier><identifier>PMID: 27043284</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Analysis ; Animals ; Biomedical research ; Biosynthesis ; Electrolytes ; Experiments ; Genetic regulation ; Hyperkalemia - genetics ; Hyperkalemia - metabolism ; Kidney Tubules - metabolism ; Kinases ; Laboratory animals ; Mechanistic Target of Rapamycin Complex 2 ; Mice ; Mice, Transgenic ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Physiological aspects ; Physiology ; Plasma ; Potassium - metabolism ; Potassium channels ; Potassium Channels, Inwardly Rectifying - genetics ; Potassium Channels, Inwardly Rectifying - metabolism ; Rodents ; Sodium ; Software ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Water-Electrolyte Balance - physiology</subject><ispartof>The Journal of clinical investigation, 2016-05, Vol.126 (5), p.1773-1782</ispartof><rights>COPYRIGHT 2016 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation May 2016</rights><rights>Copyright © 2016, American Society for Clinical Investigation 2016 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c703t-9add1316d836325d5ede658f8f5dfa23f3567198abb07f3de64955a9f9b2c3153</citedby><cites>FETCH-LOGICAL-c703t-9add1316d836325d5ede658f8f5dfa23f3567198abb07f3de64955a9f9b2c3153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855939/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855939/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27043284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grahammer, Florian</creatorcontrib><creatorcontrib>Nesterov, Viatcheslav</creatorcontrib><creatorcontrib>Ahmed, Azaz</creatorcontrib><creatorcontrib>Steinhardt, Frederic</creatorcontrib><creatorcontrib>Sandner, Lukas</creatorcontrib><creatorcontrib>Arnold, Frederic</creatorcontrib><creatorcontrib>Cordts, Tomke</creatorcontrib><creatorcontrib>Negrea, Silvio</creatorcontrib><creatorcontrib>Bertog, Marko</creatorcontrib><creatorcontrib>Ruegg, Marcus A</creatorcontrib><creatorcontrib>Hall, Michael N</creatorcontrib><creatorcontrib>Walz, Gerd</creatorcontrib><creatorcontrib>Korbmacher, Christoph</creatorcontrib><creatorcontrib>Artunc, Ferruh</creatorcontrib><creatorcontrib>Huber, Tobias B</creatorcontrib><title>mTORC2 critically regulates renal potassium handling</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>The mTOR pathway orchestrates cellular homeostasis. The rapamycin-sensitive mTOR complex (mTORC1) in the kidney has been widely studied; however, mTORC2 function in renal tubules is poorly characterized. Here, we generated mice lacking mTORC2 in the distal tubule (Rictorfl/fl Ksp-Cre mice), which were viable and had no obvious phenotype, except for a 2.5-fold increase in plasma aldosterone. Challenged with a low-Na+ diet, these mice adequately reduced Na+ excretion; however, Rictorfl/fl Ksp-Cre mice rapidly developed hyperkalemia on a high-K+ diet, despite a 10-fold increase in serum aldosterone levels, implying that mTORC2 regulates kaliuresis. Phosphorylation of serum- and glucocorticoid-inducible kinase 1 (SGK1) and PKC-α was absent in Rictorfl/fl Ksp-Cre mice, indicating a functional block in K+ secretion activation via ROMK channels. Indeed, patch-clamp experiments on split-open tubular segments from the transition zone of the late connecting tubule and early cortical collecting duct demonstrated that Ba2+-sensitive apical K+ currents were barely detectable in the majority of Rictorfl/fl Ksp-Cre mice. Conversely, epithelial sodium channel (ENaC) activity was largely preserved, suggesting that the reduced ability to maintain K+ homeostasis is the result of impaired apical K+ conductance and not a reduced electrical driving force for K+ secretion. Thus, these data unravel a vital and nonredundant role of mTORC2 for distal tubular K+ handling.</description><subject>Analysis</subject><subject>Animals</subject><subject>Biomedical research</subject><subject>Biosynthesis</subject><subject>Electrolytes</subject><subject>Experiments</subject><subject>Genetic regulation</subject><subject>Hyperkalemia - genetics</subject><subject>Hyperkalemia - metabolism</subject><subject>Kidney Tubules - metabolism</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Mechanistic Target of Rapamycin Complex 2</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Potassium - metabolism</subject><subject>Potassium channels</subject><subject>Potassium Channels, Inwardly Rectifying - genetics</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Rodents</subject><subject>Sodium</subject><subject>Software</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Water-Electrolyte Balance - physiology</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0ltrHCEYBmApLc02LfQXlIVCSS4m9bjqTSEsOWwJLKRpb8Wd0VmDo5vRKc2_r0s2aabsRfBC0ccXDx8AHxE8QYjjr9_nCwEJpK_ABDEmKoGJeA0mEGJUSU7EAXiX0i2EiFJG34IDzCElWNAJoN3N8nqOp3Xvsqu19_fT3rSD19mkMgraTzcx65Tc0E3XOjTehfY9eGO1T-bDrj8EP8_PbuaX1dXyYjE_vapqDkmupG4aRNCsEWRGMGuYacyMCSssa6zGxBI240gKvVpBbklZpJIxLa1c4ZogRg7Bt4fczbDqTFObkHvt1aZ3ne7vVdROjVeCW6s2_lZUMCaJLAFHu4A-3g0mZdW5VBvvdTBxSApxCSVFUNAXUMGhEJxvUz__R2_j0JenelAIcybxP9Vqb5QLNpYj1ttQdUoZkYgWXFS1R7UmmHKfGIx1ZXrkT_b40hrTuXrvhuPRhmKy-ZNbPaSkFj-uX26Xv8b2yzO7NtrndYp-yC6GNIa7h637mFJv7NP_Iai21aseq7fQT8__-wk-liv5C1mW47g</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Grahammer, Florian</creator><creator>Nesterov, Viatcheslav</creator><creator>Ahmed, Azaz</creator><creator>Steinhardt, Frederic</creator><creator>Sandner, Lukas</creator><creator>Arnold, Frederic</creator><creator>Cordts, Tomke</creator><creator>Negrea, Silvio</creator><creator>Bertog, Marko</creator><creator>Ruegg, Marcus A</creator><creator>Hall, Michael N</creator><creator>Walz, Gerd</creator><creator>Korbmacher, Christoph</creator><creator>Artunc, Ferruh</creator><creator>Huber, Tobias B</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20160501</creationdate><title>mTORC2 critically regulates renal potassium handling</title><author>Grahammer, Florian ; Nesterov, Viatcheslav ; Ahmed, Azaz ; Steinhardt, Frederic ; Sandner, Lukas ; Arnold, Frederic ; Cordts, Tomke ; Negrea, Silvio ; Bertog, Marko ; Ruegg, Marcus A ; Hall, Michael N ; Walz, Gerd ; Korbmacher, Christoph ; Artunc, Ferruh ; Huber, Tobias B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c703t-9add1316d836325d5ede658f8f5dfa23f3567198abb07f3de64955a9f9b2c3153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Biomedical research</topic><topic>Biosynthesis</topic><topic>Electrolytes</topic><topic>Experiments</topic><topic>Genetic regulation</topic><topic>Hyperkalemia - genetics</topic><topic>Hyperkalemia - metabolism</topic><topic>Kidney Tubules - metabolism</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Mechanistic Target of Rapamycin Complex 2</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Potassium - metabolism</topic><topic>Potassium channels</topic><topic>Potassium Channels, Inwardly Rectifying - genetics</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Rodents</topic><topic>Sodium</topic><topic>Software</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Water-Electrolyte Balance - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grahammer, Florian</creatorcontrib><creatorcontrib>Nesterov, Viatcheslav</creatorcontrib><creatorcontrib>Ahmed, Azaz</creatorcontrib><creatorcontrib>Steinhardt, Frederic</creatorcontrib><creatorcontrib>Sandner, Lukas</creatorcontrib><creatorcontrib>Arnold, Frederic</creatorcontrib><creatorcontrib>Cordts, Tomke</creatorcontrib><creatorcontrib>Negrea, Silvio</creatorcontrib><creatorcontrib>Bertog, Marko</creatorcontrib><creatorcontrib>Ruegg, Marcus A</creatorcontrib><creatorcontrib>Hall, Michael N</creatorcontrib><creatorcontrib>Walz, Gerd</creatorcontrib><creatorcontrib>Korbmacher, Christoph</creatorcontrib><creatorcontrib>Artunc, Ferruh</creatorcontrib><creatorcontrib>Huber, Tobias B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grahammer, Florian</au><au>Nesterov, Viatcheslav</au><au>Ahmed, Azaz</au><au>Steinhardt, Frederic</au><au>Sandner, Lukas</au><au>Arnold, Frederic</au><au>Cordts, Tomke</au><au>Negrea, Silvio</au><au>Bertog, Marko</au><au>Ruegg, Marcus A</au><au>Hall, Michael N</au><au>Walz, Gerd</au><au>Korbmacher, Christoph</au><au>Artunc, Ferruh</au><au>Huber, Tobias B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC2 critically regulates renal potassium handling</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>126</volume><issue>5</issue><spage>1773</spage><epage>1782</epage><pages>1773-1782</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>The mTOR pathway orchestrates cellular homeostasis. The rapamycin-sensitive mTOR complex (mTORC1) in the kidney has been widely studied; however, mTORC2 function in renal tubules is poorly characterized. Here, we generated mice lacking mTORC2 in the distal tubule (Rictorfl/fl Ksp-Cre mice), which were viable and had no obvious phenotype, except for a 2.5-fold increase in plasma aldosterone. Challenged with a low-Na+ diet, these mice adequately reduced Na+ excretion; however, Rictorfl/fl Ksp-Cre mice rapidly developed hyperkalemia on a high-K+ diet, despite a 10-fold increase in serum aldosterone levels, implying that mTORC2 regulates kaliuresis. Phosphorylation of serum- and glucocorticoid-inducible kinase 1 (SGK1) and PKC-α was absent in Rictorfl/fl Ksp-Cre mice, indicating a functional block in K+ secretion activation via ROMK channels. Indeed, patch-clamp experiments on split-open tubular segments from the transition zone of the late connecting tubule and early cortical collecting duct demonstrated that Ba2+-sensitive apical K+ currents were barely detectable in the majority of Rictorfl/fl Ksp-Cre mice. Conversely, epithelial sodium channel (ENaC) activity was largely preserved, suggesting that the reduced ability to maintain K+ homeostasis is the result of impaired apical K+ conductance and not a reduced electrical driving force for K+ secretion. Thus, these data unravel a vital and nonredundant role of mTORC2 for distal tubular K+ handling.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>27043284</pmid><doi>10.1172/JCI80304</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2016-05, Vol.126 (5), p.1773-1782
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4855939
source MEDLINE; Journals@Ovid Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Analysis
Animals
Biomedical research
Biosynthesis
Electrolytes
Experiments
Genetic regulation
Hyperkalemia - genetics
Hyperkalemia - metabolism
Kidney Tubules - metabolism
Kinases
Laboratory animals
Mechanistic Target of Rapamycin Complex 2
Mice
Mice, Transgenic
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
Physiological aspects
Physiology
Plasma
Potassium - metabolism
Potassium channels
Potassium Channels, Inwardly Rectifying - genetics
Potassium Channels, Inwardly Rectifying - metabolism
Rodents
Sodium
Software
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Water-Electrolyte Balance - physiology
title mTORC2 critically regulates renal potassium handling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC2%20critically%20regulates%20renal%20potassium%20handling&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Grahammer,%20Florian&rft.date=2016-05-01&rft.volume=126&rft.issue=5&rft.spage=1773&rft.epage=1782&rft.pages=1773-1782&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI80304&rft_dat=%3Cgale_pubme%3EA453914178%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787127592&rft_id=info:pmid/27043284&rft_galeid=A453914178&rfr_iscdi=true