Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients

Aims. Motor imagery has emerged as a promising technique for the improvement of motor function following stroke, but the mechanism of functional network reorganization in patients during this process remains unclear. The aim of this study is to evaluate the cortical motor network patterns of effecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2016-01, Vol.2016 (2016), p.1-9
Hauptverfasser: Liu, Hongliang, Yan, Rubing, Zhang, Ye, Zhang, Jing-na, Wang, Li, Qiu, Ming-guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2016
container_start_page 1
container_title BioMed research international
container_volume 2016
creator Liu, Hongliang
Yan, Rubing
Zhang, Ye
Zhang, Jing-na
Wang, Li
Qiu, Ming-guo
description Aims. Motor imagery has emerged as a promising technique for the improvement of motor function following stroke, but the mechanism of functional network reorganization in patients during this process remains unclear. The aim of this study is to evaluate the cortical motor network patterns of effective connectivity in stroke patients. Methods. Ten stroke patients with right hand hemiplegia and ten normal control subjects were recruited. We applied conditional Granger causality analysis (CGCA) to explore and compare the functional connectivity between motor execution and motor imagery. Results. Compared with the normal controls, the patient group showed lower effective connectivity to the primary motor cortex (M1), the premotor cortex (PMC), and the supplementary motor area (SMA) in the damaged hemisphere but stronger effective connectivity to the ipsilesional PMC and M1 in the intact hemisphere during motor execution. There were tighter connections in the cortical motor network in the patients than in the controls during motor imagery, and the patients showed more effective connectivity in the intact hemisphere. Conclusions. The increase in effective connectivity suggests that motor imagery enhances core corticocortical interactions, promotes internal interaction in damaged hemispheres in stroke patients, and may facilitate recovery of motor function.
doi_str_mv 10.1155/2016/3870863
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4854998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A520714920</galeid><sourcerecordid>A520714920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-539d725ab34f8ed20c66ae65b6d192c24c27d2869e871034fd2891361fba878c3</originalsourceid><addsrcrecordid>eNqNkstrVDEYxS-i2FK7cy0BN4KOzePmtRGGYayFioK6Dpk8pql3kprkVgf84811xrG6ajb58uWXk-Rwuu4pgq8RovQMQ8TOiOBQMPKgO8YE9TOGevTwUBNy1J2Wcg3bEIhByR53R5hjCAknx93PRYo21JCiHsB51nHtMljosegh1C2Yt_a2hAKSB0vvnanh1oF2Jv4uJ8SOOcQ1eJ9qyuBio5vAFuho953lD2fGSR-ECD7VnL468FHX4GItT7pHXg_Fne7nk-7L2-XnxbvZ5Yfzi8X8cmaoFHVGibQcU70ivRfOYmgY047RFbNIYoN7g7nFgkknOIINaguJCEN-pQUXhpx0b3a6N-Nq46xpd2c9qJscNjpvVdJB_bsTw5Vap1vVC9pLKZrAi71ATt9GV6rahGLcMOjo0lgU4rIZyySX90L7hjLY0Of_oddpzM3xiRKUU9RD9Jda68GpEH1qTzSTqJpTDDnqJZ60Xu0ok1Mp2fnD7xBUU1TUFBW1j0rDn9115AD_CUYDXu6AqxCt_h7uKeca47y-Q0veTCS_ADvwz3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785751401</pqid></control><display><type>article</type><title>Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liu, Hongliang ; Yan, Rubing ; Zhang, Ye ; Zhang, Jing-na ; Wang, Li ; Qiu, Ming-guo</creator><contributor>Kirino, Eiji</contributor><creatorcontrib>Liu, Hongliang ; Yan, Rubing ; Zhang, Ye ; Zhang, Jing-na ; Wang, Li ; Qiu, Ming-guo ; Kirino, Eiji</creatorcontrib><description>Aims. Motor imagery has emerged as a promising technique for the improvement of motor function following stroke, but the mechanism of functional network reorganization in patients during this process remains unclear. The aim of this study is to evaluate the cortical motor network patterns of effective connectivity in stroke patients. Methods. Ten stroke patients with right hand hemiplegia and ten normal control subjects were recruited. We applied conditional Granger causality analysis (CGCA) to explore and compare the functional connectivity between motor execution and motor imagery. Results. Compared with the normal controls, the patient group showed lower effective connectivity to the primary motor cortex (M1), the premotor cortex (PMC), and the supplementary motor area (SMA) in the damaged hemisphere but stronger effective connectivity to the ipsilesional PMC and M1 in the intact hemisphere during motor execution. There were tighter connections in the cortical motor network in the patients than in the controls during motor imagery, and the patients showed more effective connectivity in the intact hemisphere. Conclusions. The increase in effective connectivity suggests that motor imagery enhances core corticocortical interactions, promotes internal interaction in damaged hemispheres in stroke patients, and may facilitate recovery of motor function.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2016/3870863</identifier><identifier>PMID: 27200373</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Brain ; Causality ; Comparative analysis ; Connectome - methods ; Data Interpretation, Statistical ; Electroencephalography - methods ; Evoked Potentials, Motor ; Experiments ; Female ; Humans ; Imagination ; Male ; Middle Aged ; Motor ability ; Motor Cortex - physiopathology ; Movement ; Neural Pathways - physiopathology ; Patients ; Physical therapy ; Reproducibility of Results ; Sensitivity and Specificity ; Software ; Stroke ; Stroke - physiopathology ; Stroke patients ; Time series</subject><ispartof>BioMed research international, 2016-01, Vol.2016 (2016), p.1-9</ispartof><rights>Copyright © 2016 Li Wang et al.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2016 Li Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 Li Wang et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-539d725ab34f8ed20c66ae65b6d192c24c27d2869e871034fd2891361fba878c3</citedby><cites>FETCH-LOGICAL-c598t-539d725ab34f8ed20c66ae65b6d192c24c27d2869e871034fd2891361fba878c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854998/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854998/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27200373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kirino, Eiji</contributor><creatorcontrib>Liu, Hongliang</creatorcontrib><creatorcontrib>Yan, Rubing</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Zhang, Jing-na</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Qiu, Ming-guo</creatorcontrib><title>Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Aims. Motor imagery has emerged as a promising technique for the improvement of motor function following stroke, but the mechanism of functional network reorganization in patients during this process remains unclear. The aim of this study is to evaluate the cortical motor network patterns of effective connectivity in stroke patients. Methods. Ten stroke patients with right hand hemiplegia and ten normal control subjects were recruited. We applied conditional Granger causality analysis (CGCA) to explore and compare the functional connectivity between motor execution and motor imagery. Results. Compared with the normal controls, the patient group showed lower effective connectivity to the primary motor cortex (M1), the premotor cortex (PMC), and the supplementary motor area (SMA) in the damaged hemisphere but stronger effective connectivity to the ipsilesional PMC and M1 in the intact hemisphere during motor execution. There were tighter connections in the cortical motor network in the patients than in the controls during motor imagery, and the patients showed more effective connectivity in the intact hemisphere. Conclusions. The increase in effective connectivity suggests that motor imagery enhances core corticocortical interactions, promotes internal interaction in damaged hemispheres in stroke patients, and may facilitate recovery of motor function.</description><subject>Brain</subject><subject>Causality</subject><subject>Comparative analysis</subject><subject>Connectome - methods</subject><subject>Data Interpretation, Statistical</subject><subject>Electroencephalography - methods</subject><subject>Evoked Potentials, Motor</subject><subject>Experiments</subject><subject>Female</subject><subject>Humans</subject><subject>Imagination</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Motor ability</subject><subject>Motor Cortex - physiopathology</subject><subject>Movement</subject><subject>Neural Pathways - physiopathology</subject><subject>Patients</subject><subject>Physical therapy</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>Stroke</subject><subject>Stroke - physiopathology</subject><subject>Stroke patients</subject><subject>Time series</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkstrVDEYxS-i2FK7cy0BN4KOzePmtRGGYayFioK6Dpk8pql3kprkVgf84811xrG6ajb58uWXk-Rwuu4pgq8RovQMQ8TOiOBQMPKgO8YE9TOGevTwUBNy1J2Wcg3bEIhByR53R5hjCAknx93PRYo21JCiHsB51nHtMljosegh1C2Yt_a2hAKSB0vvnanh1oF2Jv4uJ8SOOcQ1eJ9qyuBio5vAFuho953lD2fGSR-ECD7VnL468FHX4GItT7pHXg_Fne7nk-7L2-XnxbvZ5Yfzi8X8cmaoFHVGibQcU70ivRfOYmgY047RFbNIYoN7g7nFgkknOIINaguJCEN-pQUXhpx0b3a6N-Nq46xpd2c9qJscNjpvVdJB_bsTw5Vap1vVC9pLKZrAi71ATt9GV6rahGLcMOjo0lgU4rIZyySX90L7hjLY0Of_oddpzM3xiRKUU9RD9Jda68GpEH1qTzSTqJpTDDnqJZ60Xu0ok1Mp2fnD7xBUU1TUFBW1j0rDn9115AD_CUYDXu6AqxCt_h7uKeca47y-Q0veTCS_ADvwz3w</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Liu, Hongliang</creator><creator>Yan, Rubing</creator><creator>Zhang, Ye</creator><creator>Zhang, Jing-na</creator><creator>Wang, Li</creator><creator>Qiu, Ming-guo</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients</title><author>Liu, Hongliang ; Yan, Rubing ; Zhang, Ye ; Zhang, Jing-na ; Wang, Li ; Qiu, Ming-guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-539d725ab34f8ed20c66ae65b6d192c24c27d2869e871034fd2891361fba878c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Brain</topic><topic>Causality</topic><topic>Comparative analysis</topic><topic>Connectome - methods</topic><topic>Data Interpretation, Statistical</topic><topic>Electroencephalography - methods</topic><topic>Evoked Potentials, Motor</topic><topic>Experiments</topic><topic>Female</topic><topic>Humans</topic><topic>Imagination</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Motor ability</topic><topic>Motor Cortex - physiopathology</topic><topic>Movement</topic><topic>Neural Pathways - physiopathology</topic><topic>Patients</topic><topic>Physical therapy</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>Stroke</topic><topic>Stroke - physiopathology</topic><topic>Stroke patients</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hongliang</creatorcontrib><creatorcontrib>Yan, Rubing</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Zhang, Jing-na</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Qiu, Ming-guo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hongliang</au><au>Yan, Rubing</au><au>Zhang, Ye</au><au>Zhang, Jing-na</au><au>Wang, Li</au><au>Qiu, Ming-guo</au><au>Kirino, Eiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Aims. Motor imagery has emerged as a promising technique for the improvement of motor function following stroke, but the mechanism of functional network reorganization in patients during this process remains unclear. The aim of this study is to evaluate the cortical motor network patterns of effective connectivity in stroke patients. Methods. Ten stroke patients with right hand hemiplegia and ten normal control subjects were recruited. We applied conditional Granger causality analysis (CGCA) to explore and compare the functional connectivity between motor execution and motor imagery. Results. Compared with the normal controls, the patient group showed lower effective connectivity to the primary motor cortex (M1), the premotor cortex (PMC), and the supplementary motor area (SMA) in the damaged hemisphere but stronger effective connectivity to the ipsilesional PMC and M1 in the intact hemisphere during motor execution. There were tighter connections in the cortical motor network in the patients than in the controls during motor imagery, and the patients showed more effective connectivity in the intact hemisphere. Conclusions. The increase in effective connectivity suggests that motor imagery enhances core corticocortical interactions, promotes internal interaction in damaged hemispheres in stroke patients, and may facilitate recovery of motor function.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27200373</pmid><doi>10.1155/2016/3870863</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2016-01, Vol.2016 (2016), p.1-9
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4854998
source MEDLINE; PubMed Central Open Access; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Brain
Causality
Comparative analysis
Connectome - methods
Data Interpretation, Statistical
Electroencephalography - methods
Evoked Potentials, Motor
Experiments
Female
Humans
Imagination
Male
Middle Aged
Motor ability
Motor Cortex - physiopathology
Movement
Neural Pathways - physiopathology
Patients
Physical therapy
Reproducibility of Results
Sensitivity and Specificity
Software
Stroke
Stroke - physiopathology
Stroke patients
Time series
title Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20Granger%20Causality%20Analysis%20of%20Effective%20Connectivity%20during%20Motor%20Imagery%20and%20Motor%20Execution%20in%20Stroke%20Patients&rft.jtitle=BioMed%20research%20international&rft.au=Liu,%20Hongliang&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2016/3870863&rft_dat=%3Cgale_pubme%3EA520714920%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785751401&rft_id=info:pmid/27200373&rft_galeid=A520714920&rfr_iscdi=true