Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development

SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endoso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2016-05, Vol.171 (1), p.251-264
Hauptverfasser: Buono, Rafael Andrade, Paez-Valencia, Julio, Miller, Nathan D., Goodman, Kaija, Spitzer, Christoph, Spalding, Edgar P., Otegui, Marisa S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 1
container_start_page 251
container_title Plant physiology (Bethesda)
container_volume 171
creator Buono, Rafael Andrade
Paez-Valencia, Julio
Miller, Nathan D.
Goodman, Kaija
Spitzer, Christoph
Spalding, Edgar P.
Otegui, Marisa S.
description SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1–12). Within the ISTL1–6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.
doi_str_mv 10.1104/pp.16.00240
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4854716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24808079</jstor_id><sourcerecordid>24808079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-4dab16b2f11350682938ade923ee4472e8cbc1a7359be0dbe7652889c85b2ab03</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EokvhxBnkIxLKMuOv2Bck1C6w6kpU3cLVcpLZJVUShzhbif8e0y0FTjPS_PTevBnGXiIsEUG9G8clmiWAUPCILVBLUQit7GO2AMg9WOtO2LOUbgAAJaqn7EQYZ6VzasG-XcWOeNzx7cU58ivaH7owxynxzfpS8zA0fL29xmKzvlghbwe-GpqYYh86vo3T3A77O-ayC8PMz-mWujj2NMzP2ZNd6BK9uK-n7OvH1fXZ52Lz5dP67MOmqJVxc6GaUKGpxA5RajBWOGlDQ05IIqVKQbauagyl1K4iaCoqjRY5T211JUIF8pS9P-qOh6qnps7WU-j8OLV9mH76GFr__2Rov_t9vPXKalWiyQJv7gWm-ONAafZ9m2rqciCKh-SxdKCMLDVm9O0RraeY0kS7BxsE__sTfhw9Gn_3iUy__nezB_bP6TPw6gjcpHzwv3NlwULp5C-E3Iwf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790463751</pqid></control><display><type>article</type><title>Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Buono, Rafael Andrade ; Paez-Valencia, Julio ; Miller, Nathan D. ; Goodman, Kaija ; Spitzer, Christoph ; Spalding, Edgar P. ; Otegui, Marisa S.</creator><creatorcontrib>Buono, Rafael Andrade ; Paez-Valencia, Julio ; Miller, Nathan D. ; Goodman, Kaija ; Spitzer, Christoph ; Spalding, Edgar P. ; Otegui, Marisa S.</creatorcontrib><description>SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1–12). Within the ISTL1–6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.16.00240</identifier><identifier>PMID: 26983994</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Adenosine Triphosphatases - metabolism ; Adenosine Triphosphatases - physiology ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis Proteins - physiology ; CELL BIOLOGY ; Cotyledon ; DNA, Bacterial ; Endosomal Sorting Complexes Required for Transport - metabolism ; Gene Expression ; Gravitation ; Gravitropism ; Indoleacetic Acids ; Membrane Proteins - metabolism ; Microscopy, Electron ; Mutation ; Oxidoreductases ; Plant Development - physiology ; Plant Roots - growth &amp; development ; Plant Roots - metabolism ; Protein Transport ; Two-Hybrid System Techniques ; Vacuoles - metabolism ; Vesicular Transport Proteins - metabolism</subject><ispartof>Plant physiology (Bethesda), 2016-05, Vol.171 (1), p.251-264</ispartof><rights>Copyright © 2016 American Society of Plant Biologists</rights><rights>2016 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2016 American Society of Plant Biologists. All Rights Reserved. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-4dab16b2f11350682938ade923ee4472e8cbc1a7359be0dbe7652889c85b2ab03</citedby><orcidid>0000-0002-6356-0393 ; 0000-0002-6890-4765 ; 0000-0003-4699-6950 ; 0000-0002-6675-3836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24808079$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24808079$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26983994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buono, Rafael Andrade</creatorcontrib><creatorcontrib>Paez-Valencia, Julio</creatorcontrib><creatorcontrib>Miller, Nathan D.</creatorcontrib><creatorcontrib>Goodman, Kaija</creatorcontrib><creatorcontrib>Spitzer, Christoph</creatorcontrib><creatorcontrib>Spalding, Edgar P.</creatorcontrib><creatorcontrib>Otegui, Marisa S.</creatorcontrib><title>Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1–12). Within the ISTL1–6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphatases - physiology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>CELL BIOLOGY</subject><subject>Cotyledon</subject><subject>DNA, Bacterial</subject><subject>Endosomal Sorting Complexes Required for Transport - metabolism</subject><subject>Gene Expression</subject><subject>Gravitation</subject><subject>Gravitropism</subject><subject>Indoleacetic Acids</subject><subject>Membrane Proteins - metabolism</subject><subject>Microscopy, Electron</subject><subject>Mutation</subject><subject>Oxidoreductases</subject><subject>Plant Development - physiology</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Roots - metabolism</subject><subject>Protein Transport</subject><subject>Two-Hybrid System Techniques</subject><subject>Vacuoles - metabolism</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS0EokvhxBnkIxLKMuOv2Bck1C6w6kpU3cLVcpLZJVUShzhbif8e0y0FTjPS_PTevBnGXiIsEUG9G8clmiWAUPCILVBLUQit7GO2AMg9WOtO2LOUbgAAJaqn7EQYZ6VzasG-XcWOeNzx7cU58ivaH7owxynxzfpS8zA0fL29xmKzvlghbwe-GpqYYh86vo3T3A77O-ayC8PMz-mWujj2NMzP2ZNd6BK9uK-n7OvH1fXZ52Lz5dP67MOmqJVxc6GaUKGpxA5RajBWOGlDQ05IIqVKQbauagyl1K4iaCoqjRY5T211JUIF8pS9P-qOh6qnps7WU-j8OLV9mH76GFr__2Rov_t9vPXKalWiyQJv7gWm-ONAafZ9m2rqciCKh-SxdKCMLDVm9O0RraeY0kS7BxsE__sTfhw9Gn_3iUy__nezB_bP6TPw6gjcpHzwv3NlwULp5C-E3Iwf</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Buono, Rafael Andrade</creator><creator>Paez-Valencia, Julio</creator><creator>Miller, Nathan D.</creator><creator>Goodman, Kaija</creator><creator>Spitzer, Christoph</creator><creator>Spalding, Edgar P.</creator><creator>Otegui, Marisa S.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6356-0393</orcidid><orcidid>https://orcid.org/0000-0002-6890-4765</orcidid><orcidid>https://orcid.org/0000-0003-4699-6950</orcidid><orcidid>https://orcid.org/0000-0002-6675-3836</orcidid></search><sort><creationdate>20160501</creationdate><title>Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development</title><author>Buono, Rafael Andrade ; Paez-Valencia, Julio ; Miller, Nathan D. ; Goodman, Kaija ; Spitzer, Christoph ; Spalding, Edgar P. ; Otegui, Marisa S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-4dab16b2f11350682938ade923ee4472e8cbc1a7359be0dbe7652889c85b2ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphatases - physiology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>CELL BIOLOGY</topic><topic>Cotyledon</topic><topic>DNA, Bacterial</topic><topic>Endosomal Sorting Complexes Required for Transport - metabolism</topic><topic>Gene Expression</topic><topic>Gravitation</topic><topic>Gravitropism</topic><topic>Indoleacetic Acids</topic><topic>Membrane Proteins - metabolism</topic><topic>Microscopy, Electron</topic><topic>Mutation</topic><topic>Oxidoreductases</topic><topic>Plant Development - physiology</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Roots - metabolism</topic><topic>Protein Transport</topic><topic>Two-Hybrid System Techniques</topic><topic>Vacuoles - metabolism</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buono, Rafael Andrade</creatorcontrib><creatorcontrib>Paez-Valencia, Julio</creatorcontrib><creatorcontrib>Miller, Nathan D.</creatorcontrib><creatorcontrib>Goodman, Kaija</creatorcontrib><creatorcontrib>Spitzer, Christoph</creatorcontrib><creatorcontrib>Spalding, Edgar P.</creatorcontrib><creatorcontrib>Otegui, Marisa S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buono, Rafael Andrade</au><au>Paez-Valencia, Julio</au><au>Miller, Nathan D.</au><au>Goodman, Kaija</au><au>Spitzer, Christoph</au><au>Spalding, Edgar P.</au><au>Otegui, Marisa S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>171</volume><issue>1</issue><spage>251</spage><epage>264</epage><pages>251-264</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1–12). Within the ISTL1–6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>26983994</pmid><doi>10.1104/pp.16.00240</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6356-0393</orcidid><orcidid>https://orcid.org/0000-0002-6890-4765</orcidid><orcidid>https://orcid.org/0000-0003-4699-6950</orcidid><orcidid>https://orcid.org/0000-0002-6675-3836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2016-05, Vol.171 (1), p.251-264
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4854716
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenosine Triphosphatases - metabolism
Adenosine Triphosphatases - physiology
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
CELL BIOLOGY
Cotyledon
DNA, Bacterial
Endosomal Sorting Complexes Required for Transport - metabolism
Gene Expression
Gravitation
Gravitropism
Indoleacetic Acids
Membrane Proteins - metabolism
Microscopy, Electron
Mutation
Oxidoreductases
Plant Development - physiology
Plant Roots - growth & development
Plant Roots - metabolism
Protein Transport
Two-Hybrid System Techniques
Vacuoles - metabolism
Vesicular Transport Proteins - metabolism
title Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20SKD1%20Regulators%20LIP5%20and%20IST1-LIKE1%20in%20Endosomal%20Sorting%20and%20Plant%20Development&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Buono,%20Rafael%20Andrade&rft.date=2016-05-01&rft.volume=171&rft.issue=1&rft.spage=251&rft.epage=264&rft.pages=251-264&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.16.00240&rft_dat=%3Cjstor_pubme%3E24808079%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790463751&rft_id=info:pmid/26983994&rft_jstor_id=24808079&rfr_iscdi=true