Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development
SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endoso...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2016-05, Vol.171 (1), p.251-264 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | 1 |
container_start_page | 251 |
container_title | Plant physiology (Bethesda) |
container_volume | 171 |
creator | Buono, Rafael Andrade Paez-Valencia, Julio Miller, Nathan D. Goodman, Kaija Spitzer, Christoph Spalding, Edgar P. Otegui, Marisa S. |
description | SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1–12). Within the ISTL1–6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality. |
doi_str_mv | 10.1104/pp.16.00240 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4854716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24808079</jstor_id><sourcerecordid>24808079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-4dab16b2f11350682938ade923ee4472e8cbc1a7359be0dbe7652889c85b2ab03</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EokvhxBnkIxLKMuOv2Bck1C6w6kpU3cLVcpLZJVUShzhbif8e0y0FTjPS_PTevBnGXiIsEUG9G8clmiWAUPCILVBLUQit7GO2AMg9WOtO2LOUbgAAJaqn7EQYZ6VzasG-XcWOeNzx7cU58ivaH7owxynxzfpS8zA0fL29xmKzvlghbwe-GpqYYh86vo3T3A77O-ayC8PMz-mWujj2NMzP2ZNd6BK9uK-n7OvH1fXZ52Lz5dP67MOmqJVxc6GaUKGpxA5RajBWOGlDQ05IIqVKQbauagyl1K4iaCoqjRY5T211JUIF8pS9P-qOh6qnps7WU-j8OLV9mH76GFr__2Rov_t9vPXKalWiyQJv7gWm-ONAafZ9m2rqciCKh-SxdKCMLDVm9O0RraeY0kS7BxsE__sTfhw9Gn_3iUy__nezB_bP6TPw6gjcpHzwv3NlwULp5C-E3Iwf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790463751</pqid></control><display><type>article</type><title>Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Buono, Rafael Andrade ; Paez-Valencia, Julio ; Miller, Nathan D. ; Goodman, Kaija ; Spitzer, Christoph ; Spalding, Edgar P. ; Otegui, Marisa S.</creator><creatorcontrib>Buono, Rafael Andrade ; Paez-Valencia, Julio ; Miller, Nathan D. ; Goodman, Kaija ; Spitzer, Christoph ; Spalding, Edgar P. ; Otegui, Marisa S.</creatorcontrib><description>SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1–12). Within the ISTL1–6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.16.00240</identifier><identifier>PMID: 26983994</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Adenosine Triphosphatases - metabolism ; Adenosine Triphosphatases - physiology ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis Proteins - physiology ; CELL BIOLOGY ; Cotyledon ; DNA, Bacterial ; Endosomal Sorting Complexes Required for Transport - metabolism ; Gene Expression ; Gravitation ; Gravitropism ; Indoleacetic Acids ; Membrane Proteins - metabolism ; Microscopy, Electron ; Mutation ; Oxidoreductases ; Plant Development - physiology ; Plant Roots - growth & development ; Plant Roots - metabolism ; Protein Transport ; Two-Hybrid System Techniques ; Vacuoles - metabolism ; Vesicular Transport Proteins - metabolism</subject><ispartof>Plant physiology (Bethesda), 2016-05, Vol.171 (1), p.251-264</ispartof><rights>Copyright © 2016 American Society of Plant Biologists</rights><rights>2016 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2016 American Society of Plant Biologists. All Rights Reserved. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-4dab16b2f11350682938ade923ee4472e8cbc1a7359be0dbe7652889c85b2ab03</citedby><orcidid>0000-0002-6356-0393 ; 0000-0002-6890-4765 ; 0000-0003-4699-6950 ; 0000-0002-6675-3836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24808079$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24808079$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26983994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buono, Rafael Andrade</creatorcontrib><creatorcontrib>Paez-Valencia, Julio</creatorcontrib><creatorcontrib>Miller, Nathan D.</creatorcontrib><creatorcontrib>Goodman, Kaija</creatorcontrib><creatorcontrib>Spitzer, Christoph</creatorcontrib><creatorcontrib>Spalding, Edgar P.</creatorcontrib><creatorcontrib>Otegui, Marisa S.</creatorcontrib><title>Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1–12). Within the ISTL1–6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphatases - physiology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>CELL BIOLOGY</subject><subject>Cotyledon</subject><subject>DNA, Bacterial</subject><subject>Endosomal Sorting Complexes Required for Transport - metabolism</subject><subject>Gene Expression</subject><subject>Gravitation</subject><subject>Gravitropism</subject><subject>Indoleacetic Acids</subject><subject>Membrane Proteins - metabolism</subject><subject>Microscopy, Electron</subject><subject>Mutation</subject><subject>Oxidoreductases</subject><subject>Plant Development - physiology</subject><subject>Plant Roots - growth & development</subject><subject>Plant Roots - metabolism</subject><subject>Protein Transport</subject><subject>Two-Hybrid System Techniques</subject><subject>Vacuoles - metabolism</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS0EokvhxBnkIxLKMuOv2Bck1C6w6kpU3cLVcpLZJVUShzhbif8e0y0FTjPS_PTevBnGXiIsEUG9G8clmiWAUPCILVBLUQit7GO2AMg9WOtO2LOUbgAAJaqn7EQYZ6VzasG-XcWOeNzx7cU58ivaH7owxynxzfpS8zA0fL29xmKzvlghbwe-GpqYYh86vo3T3A77O-ayC8PMz-mWujj2NMzP2ZNd6BK9uK-n7OvH1fXZ52Lz5dP67MOmqJVxc6GaUKGpxA5RajBWOGlDQ05IIqVKQbauagyl1K4iaCoqjRY5T211JUIF8pS9P-qOh6qnps7WU-j8OLV9mH76GFr__2Rov_t9vPXKalWiyQJv7gWm-ONAafZ9m2rqciCKh-SxdKCMLDVm9O0RraeY0kS7BxsE__sTfhw9Gn_3iUy__nezB_bP6TPw6gjcpHzwv3NlwULp5C-E3Iwf</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Buono, Rafael Andrade</creator><creator>Paez-Valencia, Julio</creator><creator>Miller, Nathan D.</creator><creator>Goodman, Kaija</creator><creator>Spitzer, Christoph</creator><creator>Spalding, Edgar P.</creator><creator>Otegui, Marisa S.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6356-0393</orcidid><orcidid>https://orcid.org/0000-0002-6890-4765</orcidid><orcidid>https://orcid.org/0000-0003-4699-6950</orcidid><orcidid>https://orcid.org/0000-0002-6675-3836</orcidid></search><sort><creationdate>20160501</creationdate><title>Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development</title><author>Buono, Rafael Andrade ; Paez-Valencia, Julio ; Miller, Nathan D. ; Goodman, Kaija ; Spitzer, Christoph ; Spalding, Edgar P. ; Otegui, Marisa S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-4dab16b2f11350682938ade923ee4472e8cbc1a7359be0dbe7652889c85b2ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphatases - physiology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>CELL BIOLOGY</topic><topic>Cotyledon</topic><topic>DNA, Bacterial</topic><topic>Endosomal Sorting Complexes Required for Transport - metabolism</topic><topic>Gene Expression</topic><topic>Gravitation</topic><topic>Gravitropism</topic><topic>Indoleacetic Acids</topic><topic>Membrane Proteins - metabolism</topic><topic>Microscopy, Electron</topic><topic>Mutation</topic><topic>Oxidoreductases</topic><topic>Plant Development - physiology</topic><topic>Plant Roots - growth & development</topic><topic>Plant Roots - metabolism</topic><topic>Protein Transport</topic><topic>Two-Hybrid System Techniques</topic><topic>Vacuoles - metabolism</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buono, Rafael Andrade</creatorcontrib><creatorcontrib>Paez-Valencia, Julio</creatorcontrib><creatorcontrib>Miller, Nathan D.</creatorcontrib><creatorcontrib>Goodman, Kaija</creatorcontrib><creatorcontrib>Spitzer, Christoph</creatorcontrib><creatorcontrib>Spalding, Edgar P.</creatorcontrib><creatorcontrib>Otegui, Marisa S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buono, Rafael Andrade</au><au>Paez-Valencia, Julio</au><au>Miller, Nathan D.</au><au>Goodman, Kaija</au><au>Spitzer, Christoph</au><au>Spalding, Edgar P.</au><au>Otegui, Marisa S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>171</volume><issue>1</issue><spage>251</spage><epage>264</epage><pages>251-264</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1–12). Within the ISTL1–6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>26983994</pmid><doi>10.1104/pp.16.00240</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6356-0393</orcidid><orcidid>https://orcid.org/0000-0002-6890-4765</orcidid><orcidid>https://orcid.org/0000-0003-4699-6950</orcidid><orcidid>https://orcid.org/0000-0002-6675-3836</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2016-05, Vol.171 (1), p.251-264 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4854716 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adenosine Triphosphatases - metabolism Adenosine Triphosphatases - physiology Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis Proteins - physiology CELL BIOLOGY Cotyledon DNA, Bacterial Endosomal Sorting Complexes Required for Transport - metabolism Gene Expression Gravitation Gravitropism Indoleacetic Acids Membrane Proteins - metabolism Microscopy, Electron Mutation Oxidoreductases Plant Development - physiology Plant Roots - growth & development Plant Roots - metabolism Protein Transport Two-Hybrid System Techniques Vacuoles - metabolism Vesicular Transport Proteins - metabolism |
title | Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20SKD1%20Regulators%20LIP5%20and%20IST1-LIKE1%20in%20Endosomal%20Sorting%20and%20Plant%20Development&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Buono,%20Rafael%20Andrade&rft.date=2016-05-01&rft.volume=171&rft.issue=1&rft.spage=251&rft.epage=264&rft.pages=251-264&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.16.00240&rft_dat=%3Cjstor_pubme%3E24808079%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790463751&rft_id=info:pmid/26983994&rft_jstor_id=24808079&rfr_iscdi=true |