Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite

Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO 3 ) 1 −  x –(BaTiO 3 ) x and Bi 1 −  x Nd x FeO 3 solid solutions and the Aurivillius Bi 5 Ti 3 FeO 15 compound. The structure of the materials was examined using X-ray diffraction, and the Riet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale research letters 2016-12, Vol.11 (1), p.234-234, Article 234
Hauptverfasser: Jartych, Elżbieta, Pikula, Tomasz, Kowal, Karol, Dzik, Jolanta, Guzdek, Piotr, Czekaj, Dionizy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 1
container_start_page 234
container_title Nanoscale research letters
container_volume 11
creator Jartych, Elżbieta
Pikula, Tomasz
Kowal, Karol
Dzik, Jolanta
Guzdek, Piotr
Czekaj, Dionizy
description Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO 3 ) 1 −  x –(BaTiO 3 ) x and Bi 1 −  x Nd x FeO 3 solid solutions and the Aurivillius Bi 5 Ti 3 FeO 15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient α ME was obtained for the Bi 5 Ti 3 FeO 15 compound ( α ME  ~ 10 mVcm −1  Oe −1 ). In the case of (BiFeO 3 ) 1 −  x –(BaTiO 3 ) x and Bi 1 −  x Nd x FeO 3 solid solutions, the maximum α ME is of the order of 1 and 2.7 mVcm −1  Oe −1 , respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi 5 Ti 3 FeO 15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times.
doi_str_mv 10.1186/s11671-016-1436-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4851679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4039810051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-5b1b65704cbec6346b3fb5320f90e633acffb0f029ea4f87cc86d8b1faf14a3e3</originalsourceid><addsrcrecordid>eNqFkU1LHEEQhpsQUaP-gFzCQC5eRrumP4dAwF00CkouEbw1Pb3Va8t8mO4ZwX-f3uwqGyF46oJ66u2q9yXkM9ATAC1PE4BUUFKQJXAmS_aB7IMQsqyUvPuY65pBqYRie-RTSg-UckWV3CV7lYKqllruk283dtnjOGCLbozBFefe56oIfTHHaLvgUjGzCRfF0BezkLppvC8uMMYw4iHZ8bZNeLR5D8jtxfmv-WV5_fPH1fzsunSCsrEUDTRSKMpdg04yLhvmG8Eq6muKkjHrvG-op1WNlnutnNNyoRvw1gO3DNkB-b7WfZyaDhcO-zHa1jzG0Nn4bAYbzL-dPtyb5fBkuBbZoDoLHG8E4vB7wjSaLiSHbWt7HKZkQNNaZkOyie-iSgslGNcso1_foA_DFPvsxF-K55PlioI15eKQUkT_ujdQs0rRrFM0OUWzStGsZr5sH_w68RJbBqo1kHKrX2Lc-vq_qn8Ay3-nfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785457063</pqid></control><display><type>article</type><title>Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jartych, Elżbieta ; Pikula, Tomasz ; Kowal, Karol ; Dzik, Jolanta ; Guzdek, Piotr ; Czekaj, Dionizy</creator><creatorcontrib>Jartych, Elżbieta ; Pikula, Tomasz ; Kowal, Karol ; Dzik, Jolanta ; Guzdek, Piotr ; Czekaj, Dionizy</creatorcontrib><description>Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO 3 ) 1 −  x –(BaTiO 3 ) x and Bi 1 −  x Nd x FeO 3 solid solutions and the Aurivillius Bi 5 Ti 3 FeO 15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient α ME was obtained for the Bi 5 Ti 3 FeO 15 compound ( α ME  ~ 10 mVcm −1  Oe −1 ). In the case of (BiFeO 3 ) 1 −  x –(BaTiO 3 ) x and Bi 1 −  x Nd x FeO 3 solid solutions, the maximum α ME is of the order of 1 and 2.7 mVcm −1  Oe −1 , respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi 5 Ti 3 FeO 15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-016-1436-3</identifier><identifier>PMID: 27129686</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bismuth ; Ceramics ; Chemistry and Materials Science ; Coupling ; Diffraction ; EMN Meeting ; Ferrite ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Neodymium ; Solid solutions ; Transformations</subject><ispartof>Nanoscale research letters, 2016-12, Vol.11 (1), p.234-234, Article 234</ispartof><rights>Jartych et al. 2016</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-5b1b65704cbec6346b3fb5320f90e633acffb0f029ea4f87cc86d8b1faf14a3e3</citedby><cites>FETCH-LOGICAL-c503t-5b1b65704cbec6346b3fb5320f90e633acffb0f029ea4f87cc86d8b1faf14a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851679/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851679/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27129686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jartych, Elżbieta</creatorcontrib><creatorcontrib>Pikula, Tomasz</creatorcontrib><creatorcontrib>Kowal, Karol</creatorcontrib><creatorcontrib>Dzik, Jolanta</creatorcontrib><creatorcontrib>Guzdek, Piotr</creatorcontrib><creatorcontrib>Czekaj, Dionizy</creatorcontrib><title>Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO 3 ) 1 −  x –(BaTiO 3 ) x and Bi 1 −  x Nd x FeO 3 solid solutions and the Aurivillius Bi 5 Ti 3 FeO 15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient α ME was obtained for the Bi 5 Ti 3 FeO 15 compound ( α ME  ~ 10 mVcm −1  Oe −1 ). In the case of (BiFeO 3 ) 1 −  x –(BaTiO 3 ) x and Bi 1 −  x Nd x FeO 3 solid solutions, the maximum α ME is of the order of 1 and 2.7 mVcm −1  Oe −1 , respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi 5 Ti 3 FeO 15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times.</description><subject>Bismuth</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Diffraction</subject><subject>EMN Meeting</subject><subject>Ferrite</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Neodymium</subject><subject>Solid solutions</subject><subject>Transformations</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LHEEQhpsQUaP-gFzCQC5eRrumP4dAwF00CkouEbw1Pb3Va8t8mO4ZwX-f3uwqGyF46oJ66u2q9yXkM9ATAC1PE4BUUFKQJXAmS_aB7IMQsqyUvPuY65pBqYRie-RTSg-UckWV3CV7lYKqllruk283dtnjOGCLbozBFefe56oIfTHHaLvgUjGzCRfF0BezkLppvC8uMMYw4iHZ8bZNeLR5D8jtxfmv-WV5_fPH1fzsunSCsrEUDTRSKMpdg04yLhvmG8Eq6muKkjHrvG-op1WNlnutnNNyoRvw1gO3DNkB-b7WfZyaDhcO-zHa1jzG0Nn4bAYbzL-dPtyb5fBkuBbZoDoLHG8E4vB7wjSaLiSHbWt7HKZkQNNaZkOyie-iSgslGNcso1_foA_DFPvsxF-K55PlioI15eKQUkT_ujdQs0rRrFM0OUWzStGsZr5sH_w68RJbBqo1kHKrX2Lc-vq_qn8Ay3-nfg</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Jartych, Elżbieta</creator><creator>Pikula, Tomasz</creator><creator>Kowal, Karol</creator><creator>Dzik, Jolanta</creator><creator>Guzdek, Piotr</creator><creator>Czekaj, Dionizy</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite</title><author>Jartych, Elżbieta ; Pikula, Tomasz ; Kowal, Karol ; Dzik, Jolanta ; Guzdek, Piotr ; Czekaj, Dionizy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-5b1b65704cbec6346b3fb5320f90e633acffb0f029ea4f87cc86d8b1faf14a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bismuth</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Diffraction</topic><topic>EMN Meeting</topic><topic>Ferrite</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Neodymium</topic><topic>Solid solutions</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jartych, Elżbieta</creatorcontrib><creatorcontrib>Pikula, Tomasz</creatorcontrib><creatorcontrib>Kowal, Karol</creatorcontrib><creatorcontrib>Dzik, Jolanta</creatorcontrib><creatorcontrib>Guzdek, Piotr</creatorcontrib><creatorcontrib>Czekaj, Dionizy</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jartych, Elżbieta</au><au>Pikula, Tomasz</au><au>Kowal, Karol</au><au>Dzik, Jolanta</au><au>Guzdek, Piotr</au><au>Czekaj, Dionizy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>234</spage><epage>234</epage><pages>234-234</pages><artnum>234</artnum><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO 3 ) 1 −  x –(BaTiO 3 ) x and Bi 1 −  x Nd x FeO 3 solid solutions and the Aurivillius Bi 5 Ti 3 FeO 15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient α ME was obtained for the Bi 5 Ti 3 FeO 15 compound ( α ME  ~ 10 mVcm −1  Oe −1 ). In the case of (BiFeO 3 ) 1 −  x –(BaTiO 3 ) x and Bi 1 −  x Nd x FeO 3 solid solutions, the maximum α ME is of the order of 1 and 2.7 mVcm −1  Oe −1 , respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi 5 Ti 3 FeO 15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27129686</pmid><doi>10.1186/s11671-016-1436-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7573
ispartof Nanoscale research letters, 2016-12, Vol.11 (1), p.234-234, Article 234
issn 1931-7573
1556-276X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4851679
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bismuth
Ceramics
Chemistry and Materials Science
Coupling
Diffraction
EMN Meeting
Ferrite
Materials Science
Molecular Medicine
Nano Express
Nanochemistry
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Neodymium
Solid solutions
Transformations
title Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetoelectric%20Effect%20in%20Ceramics%20Based%20on%20Bismuth%20Ferrite&rft.jtitle=Nanoscale%20research%20letters&rft.au=Jartych,%20El%C5%BCbieta&rft.date=2016-12-01&rft.volume=11&rft.issue=1&rft.spage=234&rft.epage=234&rft.pages=234-234&rft.artnum=234&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-016-1436-3&rft_dat=%3Cproquest_pubme%3E4039810051%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785457063&rft_id=info:pmid/27129686&rfr_iscdi=true