Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite
Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO 3 ) 1 − x –(BaTiO 3 ) x and Bi 1 − x Nd x FeO 3 solid solutions and the Aurivillius Bi 5 Ti 3 FeO 15 compound. The structure of the materials was examined using X-ray diffraction, and the Riet...
Gespeichert in:
Veröffentlicht in: | Nanoscale research letters 2016-12, Vol.11 (1), p.234-234, Article 234 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 1 |
container_start_page | 234 |
container_title | Nanoscale research letters |
container_volume | 11 |
creator | Jartych, Elżbieta Pikula, Tomasz Kowal, Karol Dzik, Jolanta Guzdek, Piotr Czekaj, Dionizy |
description | Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO
3
)
1 −
x
–(BaTiO
3
)
x
and Bi
1 −
x
Nd
x
FeO
3
solid solutions and the Aurivillius Bi
5
Ti
3
FeO
15
compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient
α
ME
was obtained for the Bi
5
Ti
3
FeO
15
compound (
α
ME
~ 10 mVcm
−1
Oe
−1
). In the case of (BiFeO
3
)
1 −
x
–(BaTiO
3
)
x
and Bi
1 −
x
Nd
x
FeO
3
solid solutions, the maximum
α
ME
is of the order of 1 and 2.7 mVcm
−1
Oe
−1
, respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi
5
Ti
3
FeO
15
compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times. |
doi_str_mv | 10.1186/s11671-016-1436-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4851679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4039810051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-5b1b65704cbec6346b3fb5320f90e633acffb0f029ea4f87cc86d8b1faf14a3e3</originalsourceid><addsrcrecordid>eNqFkU1LHEEQhpsQUaP-gFzCQC5eRrumP4dAwF00CkouEbw1Pb3Va8t8mO4ZwX-f3uwqGyF46oJ66u2q9yXkM9ATAC1PE4BUUFKQJXAmS_aB7IMQsqyUvPuY65pBqYRie-RTSg-UckWV3CV7lYKqllruk283dtnjOGCLbozBFefe56oIfTHHaLvgUjGzCRfF0BezkLppvC8uMMYw4iHZ8bZNeLR5D8jtxfmv-WV5_fPH1fzsunSCsrEUDTRSKMpdg04yLhvmG8Eq6muKkjHrvG-op1WNlnutnNNyoRvw1gO3DNkB-b7WfZyaDhcO-zHa1jzG0Nn4bAYbzL-dPtyb5fBkuBbZoDoLHG8E4vB7wjSaLiSHbWt7HKZkQNNaZkOyie-iSgslGNcso1_foA_DFPvsxF-K55PlioI15eKQUkT_ujdQs0rRrFM0OUWzStGsZr5sH_w68RJbBqo1kHKrX2Lc-vq_qn8Ay3-nfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785457063</pqid></control><display><type>article</type><title>Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jartych, Elżbieta ; Pikula, Tomasz ; Kowal, Karol ; Dzik, Jolanta ; Guzdek, Piotr ; Czekaj, Dionizy</creator><creatorcontrib>Jartych, Elżbieta ; Pikula, Tomasz ; Kowal, Karol ; Dzik, Jolanta ; Guzdek, Piotr ; Czekaj, Dionizy</creatorcontrib><description>Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO
3
)
1 −
x
–(BaTiO
3
)
x
and Bi
1 −
x
Nd
x
FeO
3
solid solutions and the Aurivillius Bi
5
Ti
3
FeO
15
compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient
α
ME
was obtained for the Bi
5
Ti
3
FeO
15
compound (
α
ME
~ 10 mVcm
−1
Oe
−1
). In the case of (BiFeO
3
)
1 −
x
–(BaTiO
3
)
x
and Bi
1 −
x
Nd
x
FeO
3
solid solutions, the maximum
α
ME
is of the order of 1 and 2.7 mVcm
−1
Oe
−1
, respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi
5
Ti
3
FeO
15
compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-016-1436-3</identifier><identifier>PMID: 27129686</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bismuth ; Ceramics ; Chemistry and Materials Science ; Coupling ; Diffraction ; EMN Meeting ; Ferrite ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Neodymium ; Solid solutions ; Transformations</subject><ispartof>Nanoscale research letters, 2016-12, Vol.11 (1), p.234-234, Article 234</ispartof><rights>Jartych et al. 2016</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-5b1b65704cbec6346b3fb5320f90e633acffb0f029ea4f87cc86d8b1faf14a3e3</citedby><cites>FETCH-LOGICAL-c503t-5b1b65704cbec6346b3fb5320f90e633acffb0f029ea4f87cc86d8b1faf14a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851679/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851679/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27129686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jartych, Elżbieta</creatorcontrib><creatorcontrib>Pikula, Tomasz</creatorcontrib><creatorcontrib>Kowal, Karol</creatorcontrib><creatorcontrib>Dzik, Jolanta</creatorcontrib><creatorcontrib>Guzdek, Piotr</creatorcontrib><creatorcontrib>Czekaj, Dionizy</creatorcontrib><title>Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO
3
)
1 −
x
–(BaTiO
3
)
x
and Bi
1 −
x
Nd
x
FeO
3
solid solutions and the Aurivillius Bi
5
Ti
3
FeO
15
compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient
α
ME
was obtained for the Bi
5
Ti
3
FeO
15
compound (
α
ME
~ 10 mVcm
−1
Oe
−1
). In the case of (BiFeO
3
)
1 −
x
–(BaTiO
3
)
x
and Bi
1 −
x
Nd
x
FeO
3
solid solutions, the maximum
α
ME
is of the order of 1 and 2.7 mVcm
−1
Oe
−1
, respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi
5
Ti
3
FeO
15
compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times.</description><subject>Bismuth</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Diffraction</subject><subject>EMN Meeting</subject><subject>Ferrite</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Neodymium</subject><subject>Solid solutions</subject><subject>Transformations</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LHEEQhpsQUaP-gFzCQC5eRrumP4dAwF00CkouEbw1Pb3Va8t8mO4ZwX-f3uwqGyF46oJ66u2q9yXkM9ATAC1PE4BUUFKQJXAmS_aB7IMQsqyUvPuY65pBqYRie-RTSg-UckWV3CV7lYKqllruk283dtnjOGCLbozBFefe56oIfTHHaLvgUjGzCRfF0BezkLppvC8uMMYw4iHZ8bZNeLR5D8jtxfmv-WV5_fPH1fzsunSCsrEUDTRSKMpdg04yLhvmG8Eq6muKkjHrvG-op1WNlnutnNNyoRvw1gO3DNkB-b7WfZyaDhcO-zHa1jzG0Nn4bAYbzL-dPtyb5fBkuBbZoDoLHG8E4vB7wjSaLiSHbWt7HKZkQNNaZkOyie-iSgslGNcso1_foA_DFPvsxF-K55PlioI15eKQUkT_ujdQs0rRrFM0OUWzStGsZr5sH_w68RJbBqo1kHKrX2Lc-vq_qn8Ay3-nfg</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Jartych, Elżbieta</creator><creator>Pikula, Tomasz</creator><creator>Kowal, Karol</creator><creator>Dzik, Jolanta</creator><creator>Guzdek, Piotr</creator><creator>Czekaj, Dionizy</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite</title><author>Jartych, Elżbieta ; Pikula, Tomasz ; Kowal, Karol ; Dzik, Jolanta ; Guzdek, Piotr ; Czekaj, Dionizy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-5b1b65704cbec6346b3fb5320f90e633acffb0f029ea4f87cc86d8b1faf14a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bismuth</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Diffraction</topic><topic>EMN Meeting</topic><topic>Ferrite</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Neodymium</topic><topic>Solid solutions</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jartych, Elżbieta</creatorcontrib><creatorcontrib>Pikula, Tomasz</creatorcontrib><creatorcontrib>Kowal, Karol</creatorcontrib><creatorcontrib>Dzik, Jolanta</creatorcontrib><creatorcontrib>Guzdek, Piotr</creatorcontrib><creatorcontrib>Czekaj, Dionizy</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jartych, Elżbieta</au><au>Pikula, Tomasz</au><au>Kowal, Karol</au><au>Dzik, Jolanta</au><au>Guzdek, Piotr</au><au>Czekaj, Dionizy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>234</spage><epage>234</epage><pages>234-234</pages><artnum>234</artnum><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO
3
)
1 −
x
–(BaTiO
3
)
x
and Bi
1 −
x
Nd
x
FeO
3
solid solutions and the Aurivillius Bi
5
Ti
3
FeO
15
compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient
α
ME
was obtained for the Bi
5
Ti
3
FeO
15
compound (
α
ME
~ 10 mVcm
−1
Oe
−1
). In the case of (BiFeO
3
)
1 −
x
–(BaTiO
3
)
x
and Bi
1 −
x
Nd
x
FeO
3
solid solutions, the maximum
α
ME
is of the order of 1 and 2.7 mVcm
−1
Oe
−1
, respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi
5
Ti
3
FeO
15
compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27129686</pmid><doi>10.1186/s11671-016-1436-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7573 |
ispartof | Nanoscale research letters, 2016-12, Vol.11 (1), p.234-234, Article 234 |
issn | 1931-7573 1556-276X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4851679 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bismuth Ceramics Chemistry and Materials Science Coupling Diffraction EMN Meeting Ferrite Materials Science Molecular Medicine Nano Express Nanochemistry Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Neodymium Solid solutions Transformations |
title | Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetoelectric%20Effect%20in%20Ceramics%20Based%20on%20Bismuth%20Ferrite&rft.jtitle=Nanoscale%20research%20letters&rft.au=Jartych,%20El%C5%BCbieta&rft.date=2016-12-01&rft.volume=11&rft.issue=1&rft.spage=234&rft.epage=234&rft.pages=234-234&rft.artnum=234&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-016-1436-3&rft_dat=%3Cproquest_pubme%3E4039810051%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785457063&rft_id=info:pmid/27129686&rfr_iscdi=true |